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1. Introduction 

The Wigner-Racah algebra or "the irreducible tensor method" is an indispensable 
tool in quantum chemistry, in particular for calculations within semiempirical 
symmetry-based models as, e.g. ligand-field models [1, 2]. In all such models a 
particularly transparent and rational formulation is envisaged using Wigner- 
Racah algebra in connection with the formalism of orthonormal operator sets 
introduced recently [3] and exemplified further in [4]. Calculations in polycentric 
systems such as oligonuclear transition-metal complexes may be drastically sim- 
plified using Wigner-Racah algebra for the rotation group [5] or a suitable point 
group [6]. 

The conventional Wigner-Racah algebra of the rotation group and its double 
group, i.e. the group theory of angular momentum, was well developed almost 
25 years ago (see [7, 8,9], the reprint collection [10], and the useful recent 
exposition [11]), although quite a few, mostly advanced, topics have been explored 
since then [12]. A very comprehensive treatise has appeared [13]. Following the 
famous unpublished 1940 paper by Wigner [14], the 1962 book by Griffith [1] 
and some general papers in the mid-sixties [15, 16], the seventies have witnessed 
a substantial output of literature dealing either with general Wigner-Racah 
algebra or problems related to specific groups or classes of groups - in particular 
point groups and their double groups, or classical groups, mainly the unitary 
groups SU(n) and U(n). (For some rather general reviews, see [17, 18, 19]). One 
of the first papers of the latter type was [20], of which the present work is, in 
many respects, a continuation. Relevant references will be given as we develop 
our exposition here and further discussion of the literature will be given in [21]. 
However, already here, we mention that there is a very extensive series of papers 
by Butler and co-workers leading up to the recent publication of a book [22] 
dealing with point- and double-group Wigner-Racah algebra. It might seem 
superfluous on that background to have another treatment of the subject; however, 
our description of the general theory and, perhaps more important, our approach 
to the actual construction of the algebra for the double groups is so different 
from that of Butler et al. that we think publishing it is justified. 

The following papers in the present series will deal with, firstly, general aspects 
of double groups and their 3-F symbols (paper II) and, secondly, the results we 
have obtained for the series of dihedral double groups (paper III), the tetrahedral 
double group (paper IV), the octahedral double group (paper V), and, finally, 
the icosahedral double group (paper VI). Future publications are planned to deal 
with recoupling coefficients, 6-F symbols, and 9-F symbols. 

The plan of the present paper is roughly as follows. A reformulation in Sect. 2 
of the Wigner-Eckart theorem leads in Sect. 3.1 to the general convention-free 
definition of triple coefficients, which proves to be a convenient "umbrella" 
definition for subsequent discussions of coupling (Clebsch-Gordan) coefficients 
(Sect. 3.3) and of 3-F symbols (Sect. 4) and, in particular, of the permutational 
symmetry phenomena encountered when "subducing" 3-j symbols (this will be 
described in a precise manner) from the rotation group to its subgroups (papers 
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II and subsequent papers). Sect. 5 discusses complex conjugation of irreducible 
matrix representations themselves (Sect. 5.2; the Frobenius-Schur classification) 
and of representations occurring in 3-F symbols. In Sect. 5.5 we describe a 
particularly important and convenient situation where the Wigner-Racah algebra 
of a group "mimics" that of the rotation group very closely. Finally, Sect. 6 
illustrates the preceding chapters by stating properties of the classical rotation 
group formalism using the present notation and terminology. 

The appendix collects various mathematical comments and proofs of theorems 
that could be left out of the main text, but which are included because they are 
either new in the present context or in the way they are presented. 

We believe the exposition of 3-F symbol theory given here has the additional 
virtue of being suitable as a modern introduction to the subject. The only 
mathematical prerequisites are elementary concepts from group theory and linear 
algebra, whereas we manage without explicitly introducing concepts as co- and 
contragredience, raising and lowering of indices, time-inversion etc. 

Although many of the results to be presented are more generally valid, we shall 
assume our groups to be compact in order not to have an excessive number of 
reservations and comments in the text regarding the precise validity of particular 
results. 

Notation 

We shall use the abbreviations "rep" and "irrep" for "representation" and 
"irreducible representation", respectively; thus, a rep is not necessarily irreduc- 
ible. In this language, "rep matrix" is just what has often been called "matrix 
representative" of or corresponding to a certain group element in a specified 
group representation. Matrix reps will be given special Roman type letters, F 
say, the rep matrices corresponding to group elements R denoted by F(R) and 
their matrix elements by F(R)o. Ordinary letters will, as is customary, denote 
reps without specific reference to a certain matrix form, i.e. will denote equivalence 
classes of reps. In general contexts, the totally symmetric (trivial 1-dimensional) 
irrep of  a group G will be denoted I G and its component 0. If F is a matrix 
rep, dim F denotes its dimension and ~ is the complex conjugate rep defined by 

F(R) = r ( R )  

for all group elements R. The bar denotes complex conjugation. 

For matrices, the right superscript symbol "T" denotes transposition (interchange 
of rows and columns), while t denotes formation of the adjoint (the Hermitian 
conjugate), i.e., A t = A T. By ~ and 0 are meant the unit and zero matrix, respectively 
(in any dimension). 

Regarding the rotation group R 3 (alternatively denoted S0(3), d3 or K), we use 
for its irreps the notation Dl; 1= 0, 1, 2 , . . .  (i.e., the dimension of Dl is 21+ 1). 
The rotation double group is denoted R* here (other designations are SU(2), u2, 
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and K' ) ,  and its irreps are D~ ; j=0 ,  1/2, 1 , 3 / 2 , . . .  ( d i m D i = 2 j + l ) .  By R3~ is 
meant the direct product R3 • C~ = R3 • $2. 

2. The Wigner-Eckart theorem 

The Wigner-Eckart theorem compactly expresses the essence of the application 
of group representations to the simplification and standardized parametrization 
of matrices of quantum-chemical operators. Various versions of  the statement 
are presented in many of  the standard textbooks in this area (e.g. [7] pp. 303-305 ; 
[8] pp. 78-79; [11] pp. 67-69; [23] pp. 73-75; [24] pp. 191-192; [25] pp. 224-230; 
[26] pp. 131-132; [27] pp. 56-57; [28] pp. 273-276; [29] pp. 64-68; [30] pp. 
230-232; [31] pp. 273-275) so it should need no lengthy introduction. Nevertheless 
we shall discuss the derivation and formulation of the theorem in some detail 
here, mainly for the reason that this will provide the natural background for the 
introduction of the concept of triple coefficients in Sect. 3. 

We shall assume the following rather general set-up for the Wigner-Eckart 
theorem: 
* A group G and a unitary operator rep 3- of G on a Hilbert space V. 
* Vector sets ( q h , . . . ,  ~Pa~) and (~0~,..., ~0a~) in Vtransforming under 3-as certain 
unitary matrix reps ~ and I"3 of G (of dimensions d~ and d3, respectively). We 
recall that this means that for any index 3'~ we have 

3-(R)~or, =Z r,(R)r~r~ori for all R e  G, (2.1) 
el 

the sum being extended over the components 1 , . . . ,  dl of ~'1 (and analogously, 
for the qPs). 
* A set ( ~ , . . . ,  ~a~) of operators on V transforming under 3- as a certain unitary 
matrix rep r2 (of  dimension d2) of G. Recall that this means that for any index 
3'2 we have 

~-(R)~T2~-(R ) 1 = ~, ~'~2(R)T~T2~,y~ for all R ~ G. (2.2) 
v~ 

An operator set of  this kind is sometimes called a tensor operator transforming 
as I'2 (an irreducible tensor operator if F2 is irreducible). 

We are interested in matrix elements of the form (~nl6v21qJr~) of the operators 
Gv2. Since 3- is unitary, we have 

(~,1 6~21 q,~3)=(3-(R)~,I3-(R)O~23-(R)-']3-(R)4~) 

(2.3) 
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If the matrix elements (r are ordered suitably in a row matrix ~, eq. 
(2.3) may be written compactly as 

r =~[~(R)|174 for all R e  G, (2.4) 

where | denotes tensor (or Kronecker or direct) product of matrices. If we 
replace R by R -~ in (2.4), transpose and use the unitarity of the Fi, i.e. ~ (R-~ )  r = 
F~(R), we get 

[FI(R)|174162 = e for all R ~ G (2.5) 

(denoting by e the column matrix r r obtained by transposition of ~). Eq. (2.5) 
may be viewed as a system of matrix equations in the unknown r (one equation 
for each group element). The dimension N of the linear space of solutions is 
equal to the number of  times the totally symmetric (trivial 1-dimensional) irrep 
of G occurs in F1 |174 If N > 0 and a basis (r �9 �9 �9 ~ ; )  for this linear space 
is given, any column ~ satisfying (2.5) may be written in the form 

N 
~= Y. A/3c/3 (2.6) 

/3=1 

with suitable complex numbers A~, . . . ,  AN. This, in particular, is true if z is the 
column of matrix elements introduced above. So let again c be this particular 
solution to (2.5). If we then adopt the notations 

( F I  ~2 ~3)  or  ('l~2F3/Yl-Y2'Y3)/3 
~/1 "~2 ~3 /3 

(here, the single row arrangement has been introduced for typographical con- 
venience) for the element of r corresponding to the index triple y~ Y2Y3 and the 
notation (~pr,[]~r~[[tbr~)/3 for ho, we see that (2.6), written in coordinates, reads 

(q~y~,(~yj~b73) = ~(~r~,,~r2,,tbr3)/3(F1 F2 ~3~ for all Yl, Y2, )'3. (2.7) 
/3 = 1 \'Yl 72 73 //3 

This is one form of t he  Wigner-Eckart theorem, the difference from some 
conventional forms (e.g., [1 l, 23, 26, 28, 29] with the page references given above) 
being that the "group-theoretical" or "symmetry" coefficients are the numbers 
(~1~2F3/TI'Y2~/3)/3 rather than so-called coupling coefficients (Clebsch-Gordan 
coefficients). The latter and the former types of coefficients and their mutual 
relationships will be discussed in Sect. 3, and in Sect. 5.3.3 we shall give a coupling 
coefficient version of the Wigner-Eckart theorem. The "physical" parameters 
(~pr~HCr~ll0r~) are usually called reduced matrix elements. If ( z l , . . . ,  zN) is an 
orthonormal basis, the reduced matrix elements may be recovered from (2.6) as 
follows: 

( C '  II 6  211C3)/3 = A/3 -- ( /3t0 

= E ( r l  r~ for all/3. (2.8) 
v~,2~,3\Yl Y2 Y3//3 
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The statement expressed by (2.6) and (2.7) is, from a mathematical point of view, 
not much more than a rephrasing of the definition of the coefficients 
(FII-2I-3/3'13')/23")/3)/3 �9 However, the theorem has great practical importance because 
it expresses the totality of matrix elements <~1o~=1~,~) by a small number of 
parameters (the reduced matrix elements (~r,  I ~r~ll q,r~)/3), which are independent 
of the components 3'1, 3'2, 3'3, and the symmetry coefficients (FII-2[-3/3'~3'23'3)/3, 
which are independent of the particular operator 0~2 being studied and which 
may (in principle) be determined once and for all for the matrix reps I'l, ['2, I-3. 
That N is a small number, at least when the I-~ are irreducible, follows from the 
estimate (3.1.4) below. 

Another viewpoint on the Wigner-Eckart theorem is that it serves as a definition 
of  the reduced matrix elements once the symmetry coefficients have been fixed. A 
fixation of the latter kind is one of the main goals for the following papers in 
this series. It is, of  course, important to specify which version of the Wigner-Eckart 
theorem one has used for the definition of  the reduced matrix elements in a given 
context. The way the group G is represented on the space V, i.e. the nature of 
the operator rep J-, is also important for the definition of the reduced matrix 
elements, cf. [32]. 

Remarks 

The notation (Fir2[-3/3'13'23'3)/3 is chosen to be in accord with the conventions 
usually followed in the literature and dating back to Wigner's early paper on 
simply reducible groups [14]. It also has the advantage of giving a convenient 
appearance of the Wigner-Eckart  theorem, since the complex conjugation appears 
on [-1 in (2.7) just as it appears on ~ ,  if the matrix element (~,]  0~21 ~b~3) is written 
as an integral S ~,C~2~b~3 d~-. 

These remarks seem to point to (2.4) as the natural starting-point for the sub- 
sequent discussion of the coefficients (~1[-2[-3/TI 3'23'3). We shall, however, base 
our treatment on (2.5), mainly for the reason that we shall be viewing the sets of 
such coefficients appearing in (2.4) and (2.5) as coordinate sets for certain vectors 
("the invariant vectors in representation space" of [14], the "invariant triple 
products" of [8]) - and vectors are more often handled as columns than as rows 
when one expresses the results of linear algebra in matrix language. 

Note that the use of a scalar product which is linear in the first variable and 
conjugate linear in the second variable, as is common in the mathematical 
literature, leads to placements of the complex conjugations differing from the 
present ones ([28], p. 276). 

We note further that it has not been assumed in this section that the [-i are 
irreducible. This remark may, for example, be of relevance when dealing with 
reducible reps of point groups of the type which has been called "most reduced 
with a real basis" ([20], p. 223). However, in our general study below of the 
coefficients (FIF2[-3/ 3'13'23'3) we shall mostly have to restrict attention to the case 
of irreducible I-i. 



Phase-fixed double-group 3-F symbols. I 323 

Most proofs of the Wigner-Eckart theorem in the literature involve Schur's lemma 
either directly or indirectly (e.g., [11, 24, 26, 29, 31] with page references as given 
above; [22], Chap. 4), for example in the form of the orthogonality relations, a 
fact which might lead to the suspicion that (2.7) may not be established if the Fi 
are allowed to be reducible. As we have seen, the mere separation into symmetry 
coefficients and reduced matrix elements as expressed by (2.7) does not require 
the Fi to be irreducible. However, irreducibility may be a necessary condition 
for the coefficients (F1F2F3/T17273)/3 to have certain desired properties. See, e.g. 
Sect. 3.3 for the relationship with coupling coefficients and Sect. 5.3 for the 
properties of the coefficients of the particular type (F I~F/y0y ' ) .  The latter ones 
correspond to totally symmetric operators, i.e., to the case of F2 = 1~ in (2.2). 
The particular form of the Wigner-Eckart theorem arising for the totally symmetric 
operators is sometimes just called Wigner's theorem (e.g. [33], Chap. 5). 

A derivation of the Wigner-Eckart theorem which comes close to the above one 
and in which Schur's lemma is not involved is presented in Wigner's review paper 
[34]. The same can be said of ([28] p. 275; [35], p. 54; [36]), but these treatments 
involve formulae equivalent to our (3.1.5), which is also not necessary. An 
extremely condensed derivation (with irreducibility assumed, but not used), 
equivalent to the one above, is given in [37]. 

Note that no assumptions regarding the properties of the group have been used in 
the above derivation. However, the restriction to finite-dimensional unitary rep- 
resentations in general limits the applicability of the result if G is non-compact. 
For a discussion of Wigner-Eckart-like theorems in various different or more 
general set-ups than the present one, see [38-40]. As stated in Sect. l, we shall 
restrict our theory to compact groups in the rest of this paper. 

3. The concept of triple coefficients; general properties 

3.1. Triple coefficients 

The formulation of the Wigner-Eckart theorem given in Sect. 2 shows the 
relevance of studying sets z of numbers (Ff2F3/yI"YET3) satisfying the relation 

[FI(R)@[*2(R)@['3(R)]r for all R e  G (3.1.1) 

or, written in coordinates, 

2 F1( ) , , , f2 (R) ,~ , f3(R)~,~(~/ ,  l 

for all 71, Y2, Y3 and all R E G, 

F2 ~3 

(3.1.2) 

where F1, r2, and •3 are unitary matrix reps of the group (3. Eq. (3.1.1) differs 
from Eq. (2.5) in having F~ instead of F~. In the present section we study solutions 
to (3.1.1), which is the most convenient form for the discussion in Sect. 3.2 of 
permutational properties. In Sect. 5 we discuss the subject of complex conjugation 
of matrix reps, describing in detail the relationship between solutions to (3.1.1) 
and solutions to (2.5). 
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Any set z of  numbers satisfying (3.1.1) and (3.1.2) will be called a set of  triple 
coefficients for the ordered matrix rep triple ~'1F2F3. We stress at once that no 
conventions as to, e.g., sign or modulus of  the individual numbers (F~Fff3/3'13'2y3) 
are implied in the definition and that the definition is concerned only with the 
ordered triple FI~2F3. 

[Note that no assumptions have at this stage been made regarding equivalence 
and identity of F~, F2, and F3; thus, for example, two of them might be equivalent 
without being identical. For some applications where this may be useful, see, 
e.g., Tables 3 and 8 of [41]. However, for the subsequent developments in this 
paper (the concept of 3-F symbols), we shall have to give up this degree of freedom.] 

Sets of  triple coefficients for a given triple Fl~2~ 3 are simultaneously fix-vectors 
for all the matrices 

~I(R)@F2(R)@F3(R), R ~ G, (3.1.3) 

i.e. eigenvectors with eigenvalue 1. The set o~(~IFEF3) of fix-vectors is a linear 
space, the dimension of which we shall denote dim ~-(F1F2F3) or just 
dim ~(FIF2F3), cf. Sect. A.l.1 of the appendix. With this notation, the number 
N of reduced matrix elements in (2.7) is dim ~ (~ f2F3) .  As already indicated 
in Sect. 2, dim f f ( F f 2 r 3 )  is equal to the number of times the totally symmetric 
irrep of G occurs in r1 |174 In Sect. A.l.1 we show that if  Fl, F2, and ~3 
are ireducible, then 

dim ~-(~1FEF3) ~ rain {dim F1, dim F2, dim F3} , (3.1.4) 

where the right-hand side denotes the smallest number among the dimensions 
of F~, F2, and F3. This estimate, as pointed out in Sect. 2, shows that the number 
of reduced matrix elements in general is small compared to the total number of 
matrix elements embodied in the left-hand side of (2.7). 

For irrep triples ~'~1~'~2F3, the number dim ~(FI~2F3) is called the multiplicity of  
the triple. If  the multiplicity is -< l, the triple is said to be multiplicity-free. A 
group whose triples are all multiplicity-free is itself said to be multiplicity-free. 

We note two general properties of triple coefficients: 

1 ~ Assume that G is finite of order IG 1. Let N = dim ~(FIF2F3) and let ( ~ : 1 ,  �9 �9 �9 , C N )  

be an orthonormal basis for ~(FIF2F3). We denote by (Fl~2F3/3"~3"23"3)~ the 
elements of  the fix-column % for each /3 = 1 , . . . ,  N. Then for all indices 
3'1, 3'2, 3'3, 3'~, 3'I, 3'; the following relation holds: 

3'1 3'2 3'3/~\3"~ 3'I 3'; ~=IG---]R~ y~ F , (R ) , , , ~F 2(R ) ,~ , f 3 (R ) ,~ .  
(3.1.5) 

Eq. (3.1.5) and its obvious extension to compact groups are easily proven, as 
demonstrated in Sect. A.2, where also the literature on this identity is commented 
on. Note that the F; do not have to be irreducible for (3.1.5) to be valid. 
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2 ~ If Fi, F2, and F 3 are irreducible and (FIF2F3/TIT2T3) are elements of a set of 
triple coefficients for FIF2F3, the following orthogonality relation is satisfied: 

( FI F2 F3](  F1 F2 F3)=at$(3'3, y~) for all Y3 and y~, (3.1.6) 
VlY2 3'1 3'2 3 '3/ \3 '1  3'2 3'~ 

where a is a non-negative constant. Eq. (3.1.6) is proved in the appendix, Sect. 
A.3. There are two more orthogonality relations (with summations over Y2, T3 
and y~, 3'3) which may be obtained, as will be clear from Sect. 4, by letting the 
F~ change r61es - see (4.2) and subsequent remarks. 

3.2. Permutational properties of sets of  triple coefficients 

Let F1, F2, F3 be reps of a group G with matrix forms F1, F2, F3. We shall be 
concerned with two particular situations denoted (A) and (B) below. 

(A) If in the triple F1F2F3 the matrix reps F1 and F2 are identical - whereby we 
mean that the matrix F~(R) is identical to the matrix FE(R ) for all R e  G - a 
representation of the symmetric group $2 on the linear space ~-(F1FIF3) of column 
matrices e satisfying (3.1.1) may be defined in the following way: a permutation 
o-~ $2 acts on a column c with elements (~l~'~l~3/3'lY2T3) to  give the column, 
denoted tr(,), with corresponding elements (F1F1F3/T~ ~(j)y~ '(2)y3). 

Suppose now that F3 is not identical to F~. If a column e transforms according 
to the totally symmetric irrep of $2 under the above representation, i.e. if 

~r(z) =~ for all o'~ $2, (3.2.1) 

we shall say that it is a symmetric set of  triple coefficients for the triple FIFIF3 or 
a symmetric fx-vector for Ft |174 If a column transforms according to the 
alternating irrep for $2, i.e., if 

o-(~) = - ~  when o- is the transposition (12) in $2, (3.2.2) 

we shall say that it is an antisymmetric set of  triple coefficients for the triple F~F~F3 
or an antisymmetric fix-vector for ~'l | ~1 | F 3" 

Let ,.~(F~FiF3) denote the set of symmetric fix-vectors for ~ l | 1 7 4  3 and 
~-a(F~F~F3) the set of antisymmetric fix-vectors. These sets are mutually orthogonal 
subspaces of ~(FIF1F3), and 

~ ( r l r , r 3 )  = ~ ( r ~ r i r 3 ) e  ~.( r~r l r3) .  (3.2.3) 

The asserted subspace orthogonality follows from the fact that the above rep of 
$2 on o~(FIFIF3) is unitary, i.e., (tr(r')[cr(('))= (e'[r for all C, z"c o~(rlrlr3) and 
all or c $2. Subspaces of o~(F~F~F3) transforming as different irreps of $2 are thus 
orthogonal. Eq. (3.2.3) shows that an orthonormal basis may be chosen for 
ff(FIF~F3) in which each basis vector is either symmetric or antisymmetric. 

For the case of the Fi irreducible, we show in Sect. A.1.2 that dim O~s(F1F~F3) is 
equal to the number of times the symmetric part F~ | F~ of FI| contains an 
irrep equivalent to F3 and that dim O~a(Fl~l~3) is equal to the number of times 
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the antisymmetric part F~ | El of F l |  l contains an irrep equivalent to F3. The 
resolution ofF1 | F~ and F~ | F~ as direct sums ofirreps is standard information 
in compilations of group theoretical tables (e.g., [42, 43] and appendices in many 
textbooks, including some of those cited in Sect. 2). 

Definitions similar to the above ones may, of course, be given in the cases where 
FI ~ r2 -- r3 or FI = F3 # r2. 

(B) If  in the triple F1F2F3 all three matrix reps are identical, so that the triple is 
of the form FFF, a representation of the symmetric group $3 on ~(rrr) may be 
defined in the following way: a permutation o-e $3 acts on a column r with 
elements (rrr/  v2v3) to give the column, denoted o-(~), with corresponding 
elements (FFF/y~-,o)y~-,~2)y~-~o) ). I ra  column transforms according to the totally 
symmetric irrep of Sa under this representation, i.e. if 

tr( ,)  = r for all o- ~ $3, (3.2.4) 

we shall say that it is a (fully) symmetric set of triple coefficients for the triple FFF 
or a (fully) symmetric fix-vectorfor F |  If  a column ~ transforms as the 
alternating irrep of  $3, i.e. if 

o-(r = - z  for all odd permutations o- ~ $3 (3.2.5) 

(and consequently o-(z)= r for all even o-~ $3), we shall say that it is a (fully) 
antisymmetric set of  triple coefficients for the triple FFF or a (fully) antisymmetric 
fix-vector for F |  

Let ~[3](FFF) denote the set of fully symmetric fix-vectors and ~[?](FFF) the set 
of fully antisymmetric fix-vectors. Regarding the symbols, see Sect. A.1.2. These 
sets are mutually orthogonal subspaces of ff(FFF),  and if the two-dimensional 
irrep of $3 does not occur in the decomposition of the rep of $3 on ~(FFF)  just 
described, we have 

 (rrr) = �9 ~El~(rrr). (3.2.6) 

In this situation, an orthonormal basis may be chosen for ~ (FFF)  in which each 
basis vector is either a fully symmetric fix-vector or a fully antisymmetric fix-vector. 

When (3.2.6) is satisfied, the rep F is said to be simple phase. If  all irreps of a 
finite or compact group G are simple phase, the group itself is said to be simple 
phase. 

[The term "simple phase" was coined by van Zanten and de Vries [44] (see also 
[45]), but the concept was already inherent in Derome's papers [16, 46]. See the 
review [17] and the discussion in Sect. 4.] 

For the case of F irreducible and simple phase, we show in Sect. A.1.2 that 
dim ~[3](FFF) is equal to the number of  times the symmetric part F | F of F | F 
contains an irrep equivalent to P and that dim ~E?](FFF) is equal to the number 
of  times the antisymmetric part F | F of F |  contains an irrep equivalent to F. 
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3.3. The relationship between triple coefficients and coupling coefficients (Clebsch- 
Gordan coefficients) 

We start with the following observation: if ~'l, 1"2, and A are unitary matrix irreps 
of dimensions dl, d2, and d of a group G and we have a non-zero set of triple 
coefficients (~F2A/3'13'26) for the ordered triple F~F2• the defining relation 

- r~ rl  r2 
F1(R)vaz,;F2(R)~,z~,sA(R)~,(y ~ ['2 

for all 71, Y2, 6, (3.3.1) 

cf. Eq. (3.1.2), may be written, using the unitarity of A, as 

"/;3'4 a' 7& 7)/2 

for all 35, 72, 6. (3.3.2) 

Eq. (3.3.2) tells that if we form a did2 by d matrix C(FIF21A) from the numbers 
(FIF2A/71726), using Y172 as a row index and 6 as a column index (with a 
suitable ordering), then this matrix satisfies 

[r,(R)| -1) = c ( G r 2 l •  for all R e G, (3.3.3) 

that is, 

[ r , ( R ) | 1 7 7  = c ( r , r d a ) a ( R )  for all R ~ G. (3.3.4) 

Property (3.3.4) motivates the choice of the particular symbol c(ry la). In 
mathematical terminology, this matrix intertwines the reps F~| and • 

We then turn to the situation relevant for the introduction of coupling coefficients: 
Assume again that F 1 and F2 are unitary matrix irreps of G and let &,  . . . ,  Ap 
be unitary matrix irreps of G such that F~ | is equivalent to the direct sum of 
the • i.e., equivalent to the rep with the diagonal block rep matrices 

A2(R) R ~ G. (3.3.5) 

Ap(R) 

Here, some of the A~ may be equivalent irreps; if any two of the & are equivalent, 
they are assumed to be identical. Let us carry out the construction of a matrix 
Ci = C ( G r d & )  as above for each a~ in the following way: If a particular irrep 

occurs exactly N times in (3.3.5), the dimension of the fix-space ~(F1F2~) is 
also N (cf. Sect. A.I.1). We then use the columns of an N-element orthogonal 
basis for ~(F~F2A) for the construction of the N required matrices c(&ad•  
Finally, we form a did  2 by d~d2 matrix C by juxtaposing the C~: 

C =  (e l  C2" �9 �9 Cp). (3.3.6) 
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Then from (3.3.4), we have 

-a~(R) 

[F,(R)|162 = c • for all R e G. (3.3.7) 
".. 

0 z~p(R 

We see now that we are approaching the concept of coupling coefficients. We 
need to know a little more about the matrix C. In Sect. A.3, we prove, using the 
assumed irreducibility of  the ~i, that the columns of C form an orthogonal set 
of non-zero vectors. This has the particular implication that C is nonsingular so 
that (3.3.7) may be rearranged to 

-AI(R ) 0 1 
C_I[FI(R) |  C = Aa(R) for all R ~ G. (3.3.8) 

0 AXp(R) 

Actually, it is seen from the investigation of C in Sect. A.3 lhat  if triple coeff• 
dx/-~lm ~i(Ylr:~/Yly28~) with the (F1F2Ax~/YlY28~) satisfying the normalization 
condition 

5- (F1 F2 •  2= 1 (3.3.9) 
~', ~/2ai Yl T2 ~i][ 

are used in the construction of the matrices C~, the matrix C becomes unitary. In 
this case it would be in full accord with tradition to call the elements of C coupling 
coefficients (or Clebsch-Gordan coefficients). 

[A recent author [47] has introduced a slight distinction between coupling and 
Clebsch-Gordan coefficients; we shall, however, in accord with tradition and 
[17] use the two terms interchangeably.] 

If  in case of repeated irreps A in the diagonal form (3.3.5) we distinguish triple 
coefficients from the different sets used to construct the several matrices C~ with 
Ax, = Ax by an index/8, thus writing (F~F2&/y~ y28)~, we shall denote the correspond- 
ing elements of C as (F1Yf2Y21 flail), which is the traditional coupling coefficient 
notation, except that boldface rep symbols are used here. The two formulae 

(FI  r2 A) 2=1 (3.3.10) 
3'1"/2 8 '~1 ")/2 ~ 

and 

, (FI~/I~.~2,Y2[/3A~6)= ~ ( r l r 2 A ~ f l ) ~ ( ~ :  r2y2 8)t~ (3.3.11) 

where ~(FIF2~/3) for each ~ and each/3 is a phase factor (complex number with 
modulus 1), thus show how normalized triple coefficients may be used for the 
construction of coupling coefficients. Given the triple coefficients, the easiest 
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choice for the phase factor is, of course, to take always q~(F1F2A/?)= 1 (the 
"sensible" choice of Butler [17]); however, in Sect. 5.3 we shall suggest and 
justify another convention for the case of triple coefficients forming sets of 3-F 
symbols. 

4. 3-F symbols 

The preceding sections have shown that triple coefficients (Sect. 3.1) are natural 
group representation-theoretic quantities to require for applications of the 
Wigner-Eckart  theorem (Sect. 2) and may also be used for the construction of 
coupling coefficients (Sect. 3.3). However, for practical reasons - rather than 
from fundamental necessity - the concept of 3-F symbols will now be introduced. 
This concept, by imposing restrictions on the relations between triple coefficients 
for certain different ordered irrep triples, enables a reduction in the space needed 
for the tabulation of triple coefficients and facilitates manipulations with triple 
coefficients. The introduction of 3-F symbols may also be viewed as the introduc- 
tion of  a natural partial standardization of triple coefficients since absolute values 
- at least for multiplicity-free triples - and certain relative phases are hereby 
fixed. Further standardizations will be discussed in Sect. 5 and, for specific groups, 
in the following papers. 

The properties of 3-F symbols are compactly expressed in formulae (4.11) and 
(4.12) below; the present section is mainly concerned with a thorough treatment 
of the background for these formulae. Readers who have a working knowledge 
of 3-F symbols may skip this more general discussion and proceed to Sect. 5. 
The general literature on 3-F symbols is commented on at the end of the present 
section. 

We stress that the developments of this section do not lead to the dismission of 
the concept of triple coefficients; see the remarks at the end of  the section. 

Three matrix reps F1, F2, F3 of a group G may give rise to up to six distinct 
ordered triples F~(1)F,~(2)F~(3), where or runs through the permutations in the 
symmetric group $3. While Sect. 3.2 was concerned with permutational properties 
of sets of triple coefficients for fixed ordered matrix rep triples, we here consider 
possible relationships between triple coefficients for different ordered triples and 
the interplay between such relationships and the permutational properties of the 
individual triple coefficient sets. We may also say that in Sect. 3.2, the role of 
the symmetric group was dictated by the nature of the situation considered; here 
we choose - with the above motivation - to let the symmetric group impose 
further conditions on the triple coefficients. 

Irrespective of possible identity of two or three of the Fi, we may define a family 
of fix-vectors for the unordered triple {F1, F2,  r3} to be a set {~(,)~(2~(3)10-e S3} 
consisting of six column vectors z~23, z231, ~3~2, ~213, ~32, ~;321 with the property that 

[~o-(1)(R)@~o-(2)(R)@Fo-(3)(R)]~o-O)o-(2)o-(3) = c~(1),~(2),~(3) for all R c G 
(4.1) 
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for each of  the six o-6 $3. Here the index triples ~r(1)o'(2)cr(3) are not to be 
confused with the index/3 of previous sections where a basis for o%(F1F2F3) was 
chosen. For a given or, the fix-vector eo-<l)~(2)o-(3) may of  course be a member  of  
a basis for o~(F~(l)ro-(2)Fo-(3)), but we are not concerned with the obtainment of  
such bases right now. 

For any o-~ $3, Eq. (3.1.2) is equivalent to 

- - - F1 F3 

=(r, r~ r3) 
71 Y2 73 

for all 71, 72, Y3 and all R ~ G. (4.2) 

Here we have just permuted the factors within each term in the sum. Eq. (4.2) 
shows that if c123 is a fix-vector for r l rzF3,  a fix-vector 0"(~123) for Fo-(l)F~(2)ro-(3) 
is immediately obtained by defining the "/0"(1)7~(2>70-(3)-th element of  o-(c123) to 
be (FIF2F3/YlY273). This prescription gives a mapping cr from ~(F~F2F3) onto 
~-(F~(I)FO-<z)F0"(3)). In the cases where two or three of the F~ are identical, this 
prescription agrees with the ones for mappings o- of  o~(F1FzF3) onto itself in 
Sect. 3.2. 

Thus, an obvious way of constructing a family of  fix-vectors 112o_(1)o-(2)o.(3 ) from the 
fix-vector c123 would be by putting 

~(1)o-(2)o-(3) = cr(~123) for every cr ~ $3. (4.3) 

Since a scalar multiple of  a fix-vector is a fix-vector, we could, slightly more 
generally, put 

t130"(1)o-(2)o.(3 ) = ~00"Or(~;123) for every o-~ $3,  (4.4) 

where the q~ are non-zero numbers depending on o-. 

It is natural to require that the ~ are related in such a way that if o- = p% where 
~r,p, r e  S a, we can find z~(1)o-(2)o-<3) as ~oo~-p'r(~;123). Equating these last two 
expressions and using (4.4), we get 

~0o_O'(~123) = s = ~Dp@~.Or(C123), (4.5) 

which (for ~123 non-zero) implies q~o_ = ~oq~,. Thus the requirement is that the 
numbers q~ with ~ running through $3 form a representation (necessarily one- 
dimensional and hence irreducible) of  $3. Now, $3 has two one-dimensional 
irreps, the characters of  which we shall denote Xt3] (the totally symmetric irrep) 
and XE?] (the alternating irrep). Regarding this notation, see Sect. A.1.2. 

We shall say that the family {~<1)o-(2)~(3)1 cre $3} defined by (4.4) is an even fami ly  
o f  fix-vectors for  {I'l, r2, r3} if ~ = XE3](o-) for all o-~ $3, i.e. if 

~0"(1)0"(2)o-<3) : O'(~123) foral l  ere $3. (4.6) 



Phase-fixed double-group 3-F symbols. I 331 

We shall say that the family {c~(1)~(2)~(3)1cr c $3} defined by (4.4) is an odd family 
of fix-vectors for {F1, F2, F3} if ~ = XE131(o -) for all ~rE $3, i.e., if 

s = or(~123) for all even tr c $3 

and (4.7) 

%(1)~(1)~(3) = -o ' (q23)  for all odd o-e $3. 

In the following, we shall only consider even and odd families of  fix-vectors, but 
- as noted by Griffith [1, p. 1 1] - t h i s  is not necessary and, in principle, might 
be too restrictive in some cases. 

Suppose now that F1 = F2 = F3 = F, that is, we have the situation from (B) in Sect. 
3.2. A symmetric fix-vector ~123 for F I | 1 7 4 1 7 4 1 7 4  according to the 
definition given there has the property 

O-(~:123) =X[3](O')C123 for all o-c $3. (4.8) 

An antisymmetric fix-vector for FI |174 = F | 1 7 4  has the property 

o-(~123) =XE131(o')~113 for all o-c $3. (4.9) 

This means that if z123 is either symmetric or antisymmetric, then by constructing 
the family {~=(1~(2>~(3)1o-c $3} according to (4.4) we get a set of  mutually propor- 
tional vectors. Since there is no particular reason to have several proportional 
fix-vectors for a given ordered triple, in casu FFF, we require that 

~123 = ~o-(1)o-(2)o-(3)= ~o-Or(~123) for all o-~ $3. (4.10) 

Eqs. (4.4); (4.8) or (4.9), whichever is relevant; and (4.10) may all be fulf i l led/f  
and only if we choose ~ = XE33(o-) for all o, if ~123 is symmetric and q~= = X~131(o-) 
for all o- if z123 is antisymmetric. 

Similar remarks apply in cases where F1 = F2 ~ F3, F1 r F2 = F3, or FI = F3 r F2, 
cf. part  (A) of Sect. 3.2. Here we initially only get a fixation of q~ when o- is the 
relevant transposition (cr = (12) for F~ = F2 ~ F3 etc.), but the restriction to even 
and odd families - or, equivalently, the requirement (4.5) - then fixes all q~. 

The preceding observations form a main part  of the motivation for the following 
central definition: 

A 3-F family (of fix-vectors) for an unordered triple {F1, F2, ~3} has the following 
properties: 

(i) The family is either even or odd. I f  two or three of  the F~ are identical, it is 
either an even family of  symmetric fix-vectors or an odd family of  antisymmetric 
fix-vectors. 
(ii) Each fix-vector is a unit vector. 

The totality of triple coefficients embodied in the fix-vectors of  a 3-]" family will 
be called a set of 3-F symbols for the unordered triple {FI, F2, F3}. 
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From the discussion leading to the definition it is seen that if the elements of a 
fix-vector ~23 in a 3-F family are denoted (F~F2F3/Y~ 723,3), and if o- is a permuta- 
tion, the symbol (F~(oF~(2)F~(3)/7~(1~3,,(2)3,~(3)) obtained by applying the permuta- 
tion or to the columns of (F1F2r3/3,13,23,3), may be used consistently to denote 
the elements of ~(~)~(2)~(3), which is a priori a fix-vector independent of ~123, as 
well as the elements of ct23 itself in case two or three of the F~ are identical. 

If for a given group, standard unitary matrix irreps have been chosen - that is, 
a unitary matrix irrep is distinguished in each irrep equivalence class - and sets 
of 3-F symbols have been chosen for the various unordered standard irrep triples, 
the individual elements of the fix-vectors are traditionally given the simplified 
notation (F1FzF3/ 3,13'273) - that is, no boldface symbols are used - and are called 
just 3-F symbols. We suggest that this notation only be used in such well-specified 
situations. (In Sect. 5.3, we shall discuss 3-F symbols involving the complex 
conjugates of standard irreps.) 

If a triple ~i~2~3 has multiplicity, (Sect. 3.1), the unordered triple may have 
several 3-F families which are independent in the sense that they correspond to 
linearly independent fix-vectors for any given one of the ordered triples. In such 
cases the index/3, which we dropped at the beginning of this section, will be 
used to distinguish among the several families, giving the notation 
(F1F2F3/3,13,23,3)/3 for the individual elements of the fix-vectors. 

For any given set of 3-F symbols (I'lF2F3/y13,23,3)/3, we shall define a symbol 
~r(FtF2F3/3) by putting Ir(FIF2F3/3) = +1 if the 3-F family is even and putting 
7r(FIF2F 3/3) = -1  if it is odd. This phase will be called the permutational charac- 
teristic or the transposition phase of F~F2F3/3. 

The properties (i) and (ii) may then be stated as follows: 

(i) (F=~) F~<z~ F~.~3~) =,~.(FIF2F3/3)(F: F2 F3) for a l loddo-~S3 
\ 3"o-(l) 7~(2) 3'cr(3)//3 ')/2 3'3 /3 

(4.11) 

3'13"23"3 71 3'2 3'3 /3 

With the Fi irreducible, we can combine (3.1.6) with (4.12) to obtain 

Y13'~ 3'1 72 73/ /3  \ 71 3'2 3'3]/3 

Again, there are two more formulas (with summations over 3,z, 3'3 and 3'1, 73 
respectively). 

The reader will have noticed the extensive use we have made here of the words 
"set" and "family". This is done in order to avoid the conceptual difficulties 
associated with individualizing terms like "triple coefficient", "coupling 
coefficient", and "3-F symbol". Strictly speaking, it is of course meaningless to 
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state that a single given number is, say, a triple coefficient. On the other hand, 
(4.11) does give some justification to expressions like "an even 3-F symbol" or 
"an odd 3-F symbol" and indeed to the word "symbol" itself. Because of this 
and in order to conform to tradition we have retained the "symbol" terminology. 

From the discussion in the present section and from (B) in Sect. 3.2 it is seen 
that a finite (or, generally, compact) group has a complete set of 3-F families if 
and only if it is simple phase. The first to draw attention to this fact seems to 
have been Derome [15, 16, 46], who showed that SU(3) is simple phase [46] 
and pointed out that the symmetric group $6 is not [16] and later showed that 
SU(4) is not either [48]. Van Zanten and de Vries [49] gave criteria for a group 
to be simple phase; see Sect. A.1.2 for one such criterion. All specific groups to 
be considered in the present series of papers are simple phase. 

Remarks 

The definition of 3-F symbols given above has not appeared in the present form 
in the literature before, but it is consistent with previous definitions [20, 50, 51]. 
The 3-j symbols of Wigner for simply reducible groups [14], in particular the 
rotation (double) group (cf. Sect. 6), the V coefficients of (among others) Fano 
and Racah [8] and Griffith [1] and the f coefficients [18, 52] of Kibler are all 
particular examples of 3-F symbols. For more information on the literature, see 
the reviews by Butler [17] and Kibler [18]. Unfortunately, the general 3-j symbols 
of Derome and Sharp for arbitrary compact groups [15, 46], later called 3-jm 
symbols by Butler [17, 22], are not assumed to have the property (i) above and 
thus, in our opinion, do not really deserve the designation "symbol".  

Regarding our use of "F"  rather than " j" ,  for irreps in general, we note that it 
is practical for our discussion in the following papers to only use the term "3-j 
symbols" for the conventional choice of 3-F symbols for the rotation double 
group (Sect. 6). 

The permutational characteristic 1r defined just before (4.1 l) is called a 3-j phase 
in [22]. 

Although we have now introduced the concept of 3-F symbols, we shall still be 
needing the more general concept of triple coefficients - even though all groups 
to be considered are simple phase. For one thing, we shall work with triple 
coefficients in the first part of Sect. 5, because this gives us a convenient means 
of discussing the problems of complex conjugation of irreps completely without 
implications for - or even associations to - permutational properties. Secondly, 
there are situations where one rather naturally gets involved with fix-vectors for 
irrep triples with two or three identical irreps which are neither symmetric nor 
antisymmetric; clearly, the concept of 3-F symbols is too restricted for 
the discussion of such cases. An example is the triple UT2U in the group O* 
(paper V). 

The reader interested in alternative descriptions of the mathematics of the permu- 
tation symmetries treated in this section may refer to [53]. 
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5. Complex conjugation of irreducible representations; conventions for triple 
coefficients, 3-F symbols, and coupling coefficients 

5.1. Introduction 

In Sect. 3 we discussed general properties of triple coefficients (F1FaF3/TI 'Y2'~3)" 
In Sect. 2 we saw that for application in the Wigner-Eckart theorem one needs 
coefficients of the form (FlF2F3/YlY2Y3),'and in Sect. 3.3 it was demonstrated 
that coefficients of the form (FIF2F3/71Y2y3) are relevant for the construction of 
coupling coefficients. Thus, if we have a group with a complete system of standard 
unitary matrix irreps F and if we have at our disposal triple coefficients 
(r'lF2r3/YlY2Y3) for all ordered standard irrep triples F1F2F3, we want to know 
how to get from (F1FzF3/Yl ')/2 Y3) to triple coefficients of the forms (F~F2F3/ 713'273) 
and (Fl~'aF3/'Yl'yZ'y3). In fact, a given triple of standard matrix irreps F~2F3 is 
associated, through complex conjugations, with 7 (not necessarily distinct) matrix 
irrep triples, for all of which we wish to obtain triple coefficients, if possible on 
the basis of coefficients (FIF2F3/Yl Y2y3) for the unconjugated triple. This totality 
of 8 triples is displayed in (5.1.1). 

~ Flr2r3 B 1 r l F z F 3 \  

rlFzr3 a 2 r l r 2 F 3 ~ \  

FIF2~3 B3 ~ 1 ~ 2 r 3 ~ ,  ~ (5.1.1) 

~P 1F2~3 A ~ 1 r2~[~3 

The symbols A, B ~, 6 2, and B 3 will be explained in Sect. 5.4, where further aspects 
of (5.1.1) are discussed. 

Now, if a given standard matrix irrep F~ occurring in (5.1.1) is not equivalent to 
its complex conjugate, then F~ is itself among the standard irreps - assuming that 
the system of standard matrix irreps has been chosen in such a way that complex 
conjugate irreps actually occur in complex conjugate matrix forms. This we shall 
always assume. (Although of course a restriction on the generality of the Wigner- 
Racah algebra developed, this convention entails considerable simplifications in 
notation and formalism.) Thus, the interesting irreps in connection with (5.1.1) 
are those which are equivalent to their complex conjugate. 

Observe, then, that equivalence of a unitary matrix irrep F and its complex 
conjugate F implies the existence of a unitary matrix U such that 

UF(R)U - 1 = F ( R )  for all R e  G, (5.1.2) 

cf. [54, note ll]. A unitary matrix U satisfying (5.1.2) will be called here a 
conjugating matrix for F. In mathematical terminology, the matrix U intertwines 

and F, We note at once that if U is a conjugating matrix for F, the matrices r 
and U -1 are both conjugating matrices for r .  

Now, suppose c is a column set of triple coefficients (Fl~2F3/Tl')/273) for F~F2F3, 
and D1 is a conjugating matrix for F1. Then the column matrix [~-Jll@~2@'~3]C, 
where ~2 and 9 3 are  unit matrices of dimensions dim F1 and dim F3, respectively, 
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will be a fix-vector for FI@F2@F3, so that its elements may be used as triple 
coefficients ( ~ , F 2 ~ 3 / ' y l ' Y 2 ' ) / 3 ) .  This is seen from the following calculation: 

[F,( R )| R )| R )][UTI| ~2| ~3]c 

= [(U['Uxr,(R)Ull)@r'2(R)@['3(R)]r 

~- [ ~ J l l ~ I ( R ) @ F 2 ( R ) @ ~ 3 ( R ) ] I E  

= [U,'@{2@'D3][[',(R)@F2(R)@r'3(R)]z 

=[U7'|174 for all R e  G. (5.1.3) 

If we denote the elements of U, as u,(y, ,  7',) and those of U71 as fi,(y,, y',) 
a n d / f  we agree to use the elements of [�9 7 ' |  ~2| ~3]c as triple coefficients of the 
form (f',F2F3/Y, T2Y3), we get the following formula: 

'Y 1 ')/2 ')/3 3' i ')/2 ')/3 

using the unitarity of U,. similarly, if UI and U 2 a r e  conjugating matrices for F~ 
and F2, respectively, and r c ff'(FIF2F3), we get [UT' |  U~ l @~3]c e ~-(~IF2F3) and 
thus the formula 

"Yl ")/2 'Y3 3';Y~ "Y2 ")/3 

(5.1.5) 

We stress that (5.t.4) and (5.1.5), when the conjugating matrices are given, are 
definitions which we adopt for the triple coefficients on the left-hand sides; the 
reasons for adopting exactly these definitions will become apparent in the fol- 
lowing. 

If we have fixed a conjugating matrix U for a standard unitary matrix irrep ~, 
we shall make use of the above observation and take U -1 as our conjugating 
matrix for the complex conjugate matrix irrep F. This convention ensures that 
we can operate consistently with double conjugations by just removing them, e.g., 
we obtain formulae like 

F2  3)=(F1 r2 F3) 
"Y, 72  73 "Y, ')/2 ')/3 

(5.1.6) 

(5.1.3) and note that c=[~1|174 (to see this, refer to calculation 
[(~-,)-l~-I |174 

Formulae (5.1.4) and~ show that we have enough information for the 
purpose mentioned at the beginning of this section if we have studied conjugating 
matrices for the individual standard matrix irreps, and this is what we shall do 
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in the subsequent section. Note that the restriction to irreducible F~ is essential 
for the following developments. 

5.2. Conjugating matrices .for unitary irreducible matrix representations: The 
Frobenius-Schur classification 

If  U is a square matrix with elements u~v,, we shall in the following associate 
with U a column matrix u, formed by listing the elements urn, lexicographically 
according to the index pairs yy'. 

Now assume that F is a unitary matrix irrep of a group G, and that F is equivalent 
to  ~.  

We need the following observation: a square matrix U of dimension dim F satisfies 

UF(R)=~'(R)U for all R e  G (5.2.1) 

if and only if the associated column matrix u satisfies 

[F(R)Qf"(R)]u=u for all R e  G. (5.2.2) 

Here it is understood that the elements F(R)vaF(R)v,a, of the product matrices 
F ( R ) |  are also ordered lexicographically (rows according to the index 
pairs yy', columns according to the index pairs 6~i'). The equivalence of (5.2.1) 
and (5.2.2) is immediately verified by writing each of them in coordinates. 

Eq. (5.2.2) may evidently also be written 

[f"(R)|174 = u for a l l R  ~ G. (5.2.3) 

Thus, the elements uvv, of u are triple coefficients of the type ( F l c F / y 0 y ' ) .  

[In (5.2.3), the irrep 1~ could of course equally well have been placed as the 
first or the third factor in the tensor product. The choice here of  the middle 
position is a matter of convention, and its consequences in connection with 3-F 
symbols will become clear in Sect. 5.3, in paper II, and in paper V.] 

We now apply the above considerations to the subject of conjugating matrices. 
If  U is a conjugating matrix for F, then U is in particular a non-zero matrix 
satisfying (5.21) and u thus a non-zero column matrix satisfying (5.2.3). Suppose, 
conversely, that u is a non-zero solution to (5.2.3). Then, from (3.1.6), there is a 
non-negative real number a such that 

Y u~,v,uv~,,=a6(y', y") foral l  y', y". (5.2.4) 
,y 

Since u is non-zero, a must in fact be positive. Thus the columns of U are non-zero 
and form an orthogonal system, implying that U is non-singular. In fact, U is 
proportional to a conjugating matrix for F. This follows by rewriting (5.2.4) as 

Y. (a-l/2u~,v')(a-'/2u~o, ") = ~('Y', T"). (5.2.5)  
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Since F is irreducible, we conclude from (3.1.4) that dim ~(F1 ~ F ) =  dim 1 ~ = 1. 
Combining this with the discussion in Sect. 3.2 of symmetric and antisymmetric 
fix-vectors, we see that if U is a conjugating matrix for F, then the column u is 
either a symmetric or an antisymmetric fix-vector for F | 1 o | F. Translating back 
to �9 we conclude that the matrix is either symmetric or antisymmetric. Any 
conjugating matrix for F gives an associated column matrix which is in the space 
~ (F16F)  and is thus proportional to u; therefore, all conjugating matrices of F 
have same symmetry. This gives rise to the Frobenius-Schur classification: 

A unitary matrix irrep F is of the first kind if its conjugating matrices are symmetric. 
It is of the second kind if its conjugating matrices are antisymmetric. It is of the 
third kind if dim o%(FI~F) = 0, i.e. if F is not equivalent to F. 

This classification was first set up in a slightly different formulation by Frobenius 
and Schur [55] (for not necessarily unitary matrix irreps). In their paper, the 
criterion for an irrep to be of the first kind was the existence of a real matrix 
form, a criterion which we shall also use in the following. Its equivalence to the 
above criterion follows from results stated in [56] which essentially tell that 
conjugation matrices can be prescribed arbitrarily within the symmetry/antisym- 
metry-restriction stated above. Except for these remarks and obvious consequen- 
ces of them, we shall not need further information on the F - S  classification here; 
see [56] and the literature cited therein. 

We do observe, though, that the classification of an irrep is independent of its 
actual matrix form. To see this, note for example that if U is a conjugating matrix 
for F and Q is any unitary matrix, then we have 

[QF(R)~-~ |174  = [~ |  for all R c G. (5.2.6) 

Thus, the irrep QFQ -1 has conjugating matrices with associated columns propor- 
tional to [Q|  cf. (5.2.). Obviously, [Q|  is non-zero, symmetric, or 
antisymmetric, if and only if u has the same properties, respectively. Therefore, 
equivalent unitary matrix irreps are of the same Frobenius-Schur kind. 

The column matrix [Q|  is the associated column form of the square matrix 

= QUQ- ' .  (5.2.7) 

[From the form of (5.2.7), one might suspect that ~J is only equivalent to U when 
Q is real, as is asserted by Fano and Racah [8, appendix C]. This is not correct, 
a fact which is demonstrated by the following example: 

Let 

(then F might be the j = 1/2 irrep of the rotation group, cf. Sect. 6) and let 

O:(o o) 
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where to is any complex number with modulus 1. Then one may check that 
~UQ -1= U which is certainly equivalent to U.] 

If F is an irrep which is equivalent to its complex conjugate, we shall put 
~-(Fl~F) = 1 i r e  is of the first kind and I r (FlaF)  = -1 i fF  is of the second kind. 
This is a natural extension of the notation introduced in Sect. 4 in connection 
with 3-F symbols, since 3-F symbols (FlcF/yOy') will necessarily be even 
(~r(F1GF) = 1) if F is of the first kind and odd ( I r ( F l a F ) = - 1 )  if y is of the 
second kind. 

5.3. Conjugation formulae for triple coefficients, 3-F symbols, and coupling 
coefficients 

Having studied conjugating matrices in Sect. 5.2, we shall now fix our conventions 
regarding triple coefficients, 3-F symbols, and coupling coefficients with a complex 
conjugation on one or more of the involved representations. 

5.3.1. Triple coefficients 

We shall start by considering the following rather general situation: A system of 
standard unitary matrix irreps r of a group G is given, and for each ordered 
standard irrep triple r l ~ ' ~ z F 3  �9 with dim o%(~"~1~2r3) > 0 triple coefficients 
(ELF21"3/Y172Y3)t~ have been established. We shall assume that for any standard 
irrep ~ of the first or second kind the normalization condition (5.3.1) is fulfilled. 

y, F, = 1. (5.3.1) 
vv' Y 0 y 

This condition is introduced in order to avoid dragging the left-hand side of 
(5.3.1) along as a normalization constant into all the formulas to follow; it is a 
trivial (but probably uninteresting) matter to drop this requirement. 

We shall base the conventions to be developed on those already set up in Sects. 
5.1 and 5.2. Following the discussion there, we shall define the conjugating matrix 
U for a given standard irrep F of the first or second kind by the following formula 
for its elements: 

0 7' for all 31, y', (5.3.2) 

where b is a positive number to be chosen so that U is unitary. Inserting (5.3.2) 
in the unitarity condition, (5.2.4) with a = 1, and using (5.3.1) gives b = ~/dim r 
Thus our definition reads: 

u ~ , =  di~-~m~(~ 1~0 YF') for all y, y'. (5.3.3) 

With this definition, formulae (5.1.4) and (5.1.5) become: 

,o 
'~1 7)/2 ")/3 Y[ 0 71/] ~k "~] ')/2 73 
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and 

(r'l ~2 F 3 ) =  ~ ~x/d i - - - -~- -~2(rTl  1G Fa'~(Fa 1G r2 ' / (F l  F2 F3) 
3'i 3'~ 3'~ ~ ,~  0 3'1/\3'~ 0 3'2]\3'~ 3'~ 3'3 

(5.3.5) 

and we of course obtain a series of analogous formulae for still different distribu- 
tions of one or more conjugation bars on standard irreps o f  the first or second kind. 

We note immediately some consequences of formula (5.3.4) and one of its 
analogues: Suppose F is a standard irrep of the first or second kind. Then for 
the triple coefficients of the particular type (FI ~F/3'03") we see that 

3' 0 3" ~,, \3'  0 3'" 0 3' 

= (dim F) -1/2 E uv,,vuv,,~, 
,y,, 

= 6(3', 3")(dim F)-l/2 (5.3.6) 

while for those of the particular type (FI oF/y03")  we get 

0 0 3"/\3" ,, o 

= (dim F) -l/a 2 u,,,,,u,,,, 
-y. 

= (dim F) -1/2 Y, u---~,(+ u,,,~) 
T "  " 

= +~(y, y')(dim F) -1/2 (5.3.7) 

where " + "  applies when F is of the first kind and . . . . .  applies when F is of the 
second kind (symmetric and antisymmetric conjugation matrices, respectively). 

Remarks 

I ~ Note that the above formulae involving coefficients of the types (F1GF/~0~/'), 
(F1GF/703"), and (F 16F/703") are stated only for standard irreps r ' o f  the first 
or second kind. If  F is of the third kind, dim ~ ( F I ~ F )  = 0  (Sect. 5.2) so that 
triple coefficients of the first type necessarily vanish. The formulae given here 
involving this type of coefficient would generally be wrong if applied to third-kind 
irreps F. On the other hand, for any irrep F, we have dim ~ ( F I ~ F ) =  1 = 
dim ~ ( F l c F ) ;  in fact it is an easy exercise, using the unitarity of F, to check 
that for any phases w(F, F) and w(F, F), the formulas 

( F l c  r)=o4p, r)(dimr)_l/2a(%7,) 
0 

(5.3.8) 
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and 

F lo  F )  
y 0 y, = o~(r, F)(dim r)-l/2t~(,y, y') (5.3.9) 

define triple coefficients for the triples P l c F  and F loP ,  respectively. For irreps 
F of the first or second kind, 60(F, F) and oa(F, P) are fixed by our conventions 
to be 

to(P, F) = +1 

and 

w ( F , P ) = { + I  1 
fo rF  first-kind ~ -  ~-(Flor)  
for F second-kindJ - 

(formula (5.3.6)) 

(formula (5.3.7)), 

but for F of the third kind these phases can be chosen freely. In paper II we 
shall discuss how we fix them also for third-kind irreps for the double groups 
treated there. 

2 ~ From a comparison of formulae (5.3.6) and (5.3.7) it is clear that for irreps 
of the first and second kind it is very important to distinguish between the standard 
irreps themselves and their complex conjugates. This is generally true for the 
Wigner-Raeah algebra we are developing here. 

For further discussion of complex conjugation in triple coefficients, relating to 
display (5.1.1), see Sect. 5.4. 

3 ~ Triple coefficients of the form (F 1 ~F/3'07') satisfying (5.3.1) correspond to 
Wigner's 1-j symbols [14]. In the later literature, there has been quite some 
diversity in terminology and definitions of the same or like concepts. We shall 
not introduce any new terminology in this connection 

5.3.2. 3-F symbols 

We shall of course carry over all the formulae implied in Sect. 5.3.1 to the special 
case where the triple coefficients involved form sets of 3-F symbols (Sect. 4). 
For example, formula (5.3.4) in the notation for 3-F symbols becomes 

(F F2 r3) ~ ~ 4 ~ ( ~  I 1G Fl~(Fl r2 F3) 
Yl 72 ")/3 t~ v; 0 Yl]\Y~ Y2 Y3 8" (5.3.10) 

A collection of formulas thus obtained for 3-F symbols will be available in [21] 
and in off-print from the authors. 

We note two consequences for 3-F symbols of the formalism introduced: 

1 ~ If  real 3-F symbols are given for all triples of standard irreps, then all 3-F 
symbols involving complex conjugates of standard irreps are also real (in a 
formula like (5.3.10), the right-hand side by the assumption only involves real 
numbers, and thus the left-hand side also becomes a real number). 
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2 ~ Thepermuta t iona lcharac ter i s t i c  (oddness/eveness) of 3-F symbols is preserved 
when standard irreps of the first or second kind are conjugated; thus, for example, 

'Yl ~/2 ')/3 /3 ")/1 'Y3 /3 

if F1 is of either the first or the second kind. This is easily checked by using 
(5.3.10) as it stands as well as for the triple F2F1F3. 

Considering 2 ~ it is natural to ex tend-  and this we do n o w -  the definition of 
7r(FIF2F3/3) to allow the Fi to be standard irreps or complex conjugates of 
standard irreps of the first or second kind, by simply removing the conjugations 
in the latter case; thus with reference to (5.3.11), we have 

~ ( r , r 2 v 3 ~ )  = , ( r l r 2 r 3 ~ ) .  (5.3.12) 

As a special case, we get with this extended definition: 

~(FI~P) = = ~(rl~r)= ~(rlor)= { +i if F is of the first kind 
- if F is of the second kind. 

(5.3.13) 

Butler in [22] calls this phase the 2-j phase. Note that 7r(Fl~P)= ~r(l~lcF), 
trivially, also if F is of the third kind, but that rr(Fl~F) and zr(FI~F) are not 
defined in this case (since dim ~ ( F l ~ F ) = 0 = d i m  ~ ( F I ~ F)  when F is of the 
third kind). See paper II regarding our convention for ~r(Fl~P) for third-kind 
irreps of the non-commutative double groups. 

5.3.3. Coupling coefficients; the Wigner-Eckart theorem with coupling coefficients 

We now define coupling coefficients by the 3-F symbol version of (3.3.11): 

")/2 ")/3 8" (5.3.14) 

We still have to decide which phase factor ~(F1FEF3r to use in this formula. 
Also, we want to allow the Fi in the coupling coefficient (5.3.14) to be complex 
conjugates of standard irreps, so that we can obtain, e.g., coupling coefficients 
of the type (F1T1F2"y2]~F33@, where F2 is of the first or second kind. Regarding 
the latter problem, note that as a consequence of the convention introduced at 
the end of Sect. 5.1, we may in such cases remove any double conjugations f" 
initially arising on the right-hand side of (5.3.14) by F ~ F before using the formula. 

As for the phase, we have demonstrated in Sect. A.4 that the requirement of the 
so-called associativity of the invariant triple product leads in a natural way to 
the choice 

q~(F1F2F3/3) = ~-(F1F2['3fl)~-(F 11~F1) sign (P31 aF3) (5.3.15) 

of the phase factor. Here sign (F31~F3) is the common sign of the 3-F symbols 
(F31GF3/T0]/), Cf. Sect. 5.3.1. To illustrate the use of (5.3.14) and (5.3.15) in 
connection with the above convention on doubly conjugated standard irreps, we 
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note that 

(1"1TIF2T21~ F3T3) = ~(F1F2F3fl)Tr(F11GPl)sign (F31GF3)x/di----~3 ( pl 
kYl 

F~ I'3) 

Y2 Y3 ~" 

(5.3.16) 

The coupling coefficients defined by these conventions have permutational proper- 
ties that may easily be derived; e.g., from (5.3.14) and (5.3.15) one deduces that 

(5.3.17) 

Comparing the 3-F symbol appearing on the right side of (5.3.16) with (2.7), we 
see that the Wigner-Eckart theorem may be formulated within the present formal- 
ism as 

N 

(~ '  ~ r = E <~r'llc~llcr%(rl~lP=~=l~r~3) (5.3.18) "fl "/2 ~3 /3=1 

or, permuting the F~ cyclically in the 3-F symbol before converting to coupling 
coefficients, as 

N 

13=1 

Note that the reduced matrix elements of (5.3.18) and (5.3.19) differ from those 
of (2.7) by factors ,/d--~m F and sign factors. 

Remark 

We see from (5.3.14) and (5.3.15) that if real 3-F symbols are given for a group, 
then all coupling coefficients by the present conventions will be real numbers, 
too. (Cf. 1 ~ in Sect. 5.3.2.) 

Concluding remarks on Sect. 5.3 

The formalism developed here has been constructed so as to be everywhere 
consistent with that of Wigner's 1940 paper on simply reducible groups [14]. For 
explicit examples in the particular case of the rotation double group, see Sect. 6. 

As we have seen, there is a reason-which  one may find important or n o t - f o r  
choosing the particular phase factor (5.3.15) in the relation between coupling 
coefficients and 3-F symbols rather than the admittedly more obvious "sensible" 
[17] choice of ~(FIF2F3~) = 1. Butler [e.g. 22, 17, 57] consistently suppresses this 
aspect, claiming that the phase factor, in its particular form for the group R* 
(Sect. 6 of the present paper), only exists for "historical reasons". 

5.4. Derome-Sharp matrices and related matters 

Suppose F~, F2, [?3 to be standard unitary irreducible matrix irreps. Let (r . . . .  , ~N) 
be an orthonormal basis for the fix-vector space ff(F1F2F3) consisting of columns 
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e/3 of triple coefficients (Fl~2~3/'Yl~2~3)/3. Further, let ( ~ , . . . ,  ~N) be a basis for 
the fix-vector space ~(F~F2F3), chosen in accord with the conventions in Sect. 
5.3.1 if any of the Fi are of the first or the second kind. Since the fix-vector property 

[F,(R)|174 =(/3 forall  R ~  G (5.4.1) 

is, trivially, equivalent to 

[F~(R) |  | = ~/3 for all R ~ G, (5.4.2) 

the orthonormal set ( ~ b . . . ,  ~N), consisting of the complex conjugate columns 
~ ,  is also an orthonormal basis for ~(F~FzF3). Thus, there must be a unitary 
matrix A =/~(F1F2F3) relating the two bases: 

( ~  �9 �9 �9 ~N) = (~1 �9 �9 �9 ~ ) A  

Indeed, the elements A~/3 of A are given by 

ww:,3 Yl Y2 Y3 ~ Yl 

(5.4.3) 

r~ r 3 )  
'Y2 ")/3 /3" (5.4.4) 

There are corresponding matrices B i= Bi(FlF2F3) relating triples with one conju- 
gation to triples with two conjugations, defined by 

B ~ / 3 = ~ 3  Yl Y2 Y3/~\Yl  Y2 Y3 /3 

(F,  F2 F3~ (F~ ~ F3) (5.4.6, 
B2/3 rl~v3 Yl 3/2 Y3/ ~\ Yl Y2 3/3 /3 

B3/3 vl~z,3 Yi T2 Y3/~kYl T2 T3 13 
(5.4.7) 

B'(F~FzF3), B2(F~F2F3), and The introduction of the matrices A(F1F2F3), 
B3(~'IFaF3) for a triple F1F2F3 of standard unitary matrix irreps was anticipated 
already in display (5.1.1). We see that if we have these four matrices at our 
disposal, we have reduced the problem of dealing with triple coefficients for the 
eight triples in (5.1.1) to that of dealing with the four triples in the left half of 
the figure. 

We shall call the matrix A (F I F2F3) the Derome-Sharp matrix of the triple F1F2F3 
with the chosen triple coefficients, since this kind of matrix was first studied in 
a general context in [15]. 

This far we can get in the general case. If  the Fi are of the first or second kind, 
further reduction may be achieved by the use of conjugating matrices. Formula 
(5.3.4) and (5.3.5) thus show how to get to the triples F1FzF3 and F1F2F3 from 
tlae unconjugatecl triple F~F2F3. Note that such formulae involving conjugating 
matrices apply irrespective of the Frobenius-Schur kind of  those irreps which are 
unaffected by the conjugations. 
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If  r l ,  ['2, F3 have conjugating matrices U~, the conventions of Sect. 5.3.1 lead to 
the following formulae for the elements of the A and B matrices: 

(5.4.8) 

(5.4.9) 

(5.4.10) 

B3~ = ([9, | ~2| U3']r 1[�9 ]-1| U~1@ ~3]ct~> = ~'(Fz 1GF3)A~. (5.4.11) 

Thus, these matrices may be calculated from the triple coefficients for the unconju- 
gated triple and the conjugating matrices. In the general case, they have to be 
calculated from the relevant triple coefficients by the defining formulae (5.4.4)- 
(5.4.7). For the particularly convenient type of Wigner-Racah algebra described 
in Sect. 5.5, simple general formulae may be given for the A and B; matrices (see 
Eqs. (5.5.4)-(5.5.7) below). 

Remarks 

If  the matrix A is symmetric for a given single triple F~F2F3 with a certain choice 
of bases for ~r(F~F2F3) and ~(F1F2Fs), one may choose new bases for these 
spaces such that the new matrix is the unit matrix; this is proved in Sect. A.5. 
The possibility of establishing a Wigner-Racah algebra with A = ~ consistently 
for all triples was discussed by Wigner [14] for simply reducible groups (multi- 
plicity-free groups with no irreps of the third kind) and has been investigated 
more generally by Butler [17], some prerequisite results being derived in [45]. A 
particular case where A matrices are necessarily symmetric is that of multiplicity- 
free groups (because for these, all A matrices are 1 x 1); another one is made up 
by the ambivalent groups (groups with no third-kind irreps) with a representation 
algebra "regular with respect to the Frobenius-Schur classification" (see [54] and 
Eq. (5.5.1) below). In the latter case, A matrices are given by Eq. (5.4.8) and are 
always symmetric because an even number of the U i appearing there are antisym- 
metric. The simply reducible groups [14] belong to this class. So do the groups 
we discuss in Sect. 5.5, for which the assumptions stated there have as one 
consequence that all A matrices are automatically unit matrices. In other cases 
requirements which we have taken as more fundamental may prevent us from 
having unit A matrices for all triples (for examples, see the general discussion 
of triples F I~F  in the double groups, where F is of the third kind, in paper II; 
the triple EEE in D3* (paper III); and the triple TTT in T*, discussed 
in paper IV). 

5.5. Complex conjugation by the irreducible representation matrices of a fixed group 
element 

We now restrict the scope to study the particularly convenient Wigner-Racah 
algebra which may be established for a certain class of groups to which belong 
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the rotation groups R 3 and R*, the octahedral and icosahedral double groups 
O* and I*, the dihedral double groups D* with n even, and D*,  and those finite 
(or compact) g roups -  point groups or n o t -  which have only irreps of the first 
kind. The group property on which we focus is the following one: 

( # ) There exists an element Ro in G and a choice of standard unitary matrix irreps 
of G, such that for every standard irrep r ,  F( Ro) is a conjugating matrix for 
r.  

Evidently, a group with this property has no irreps of the third kind, that is, it 
is ambivalent. In Sect. IV of [54] we deduced a necessary and sufficient condition 
for a group to have the property ( # ); from this it follows that the above-mentioned 
groups, in particular, have it. For explicit demonstrations, see Sect. 6 of this 
paper (the rotation double group), paper III (the dihedral double groups), [50] 
and paper V (the octahedral double group), and paper VI (the icosahedral double 
group). 

We write down some important consequences of having the above situation. 
Suppose G is a group enjoying the property (r  and that we have fixed an 
element Ro in G accordingly. Then: 

1 ~ Whatever choice of standard matrix irreps F is made in accordance with ( # ) ,  
the matrices r(Ro) will always be real. This is seen by putting U = r (Ro )  and 
R = Ro in (5.1.2). Moreover, by a suitable choice of standard irreps r ,  one may 
have ~(Ro) to be a conjugating matrix for F for each r and at the same time 
prescribe the form of F(Ro) almost arbitrarily. Indeed, 
(i) For an irrep of the first kind, any symmetric real orthogonal matrix with its 

trace equal to the character of the irrep at Ro may be obtained as r(Ro). 
(ii) For an irrep of the second kind, any antisymmetrie real orthogonal matrix 

may be obtained as F(Ro). 

2 ~ If a choice of standard matrix irreps 1" has been made such that F(Ro) is a 
conjugating matrix for 1 ~ for all standard r ,  then real triple coefficients may be 
chosen for each standard irrep triple. That is, given standard irreps F1, F2, ~=3 
there exists an orthonormal basis ( e l , - - . , c N )  for the linear space o~(Fl~'2~"3) 
such that all the er are real column matrices. 

3 ~ For all irrep triples r~r2r3 having non-zero fix-vectors, the phases I r ( r i l  J ' i )  
defined in Sect. 5.2 satisfy 

# ( r , 1 ~ r ~ ) ~ ( r ~ 1 ~ r = ) ~ ( r 3 1 ~ r ~ )  = 1. (5.5.1) 

The assertions I ~ and 2 ~ have been proved in [54] and [56], while 3 ~ has been 
proved and discussed in ([54], Sect. V.). Ambivalent groups having property 3 ~ 
were said there to have a "representation algebra" which was "regular with 
respect to the Frobenius-Schur classification". Differently stated, (5.5.1) expresses 
the fact that the tensor product of two irreps of the same Frobenius-Schur kind 
only contains irreps of the first kind. 
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If F(R0) is our choice of a conjugating matrix for F for all standard F, we must - to 
be consistent with (5.3.3)- define triple coefficients of the type (FIEF/3'03") by 

( F  IG F,) = (dim F)_1/=F(Ro)~ ,. (5.5.2) 
3' 0 3' 

Making use of the double r61e of the F(Ro) ~as irrep matrices and as conjugating 
matrices, one may derive formulae concerning the addition of or removal of 
complex conjugations in triple coefficients, as we shall now see. 

First, suppose that (~ . . . . .  oN) is a basis for ff(FIF2F3). By using the fix-vector 
property (3.1.1) for the group element Ro ~ and the fact that the Fi(R0) are real 
matrices (see 1 ~ above), we get 

= [rl(Ro) -1 |  - l |  for all/3, (5.5.3) 

which when written in coordinates, according to the definitions in Sect. 5.1 for 
the use of conjugating matrices, reads 

3'1 72 3/3 /3 3'I 3'2 3'3 /3 

Eq. (5.5.4) shows that for all triples F1F2F3, the Derome-Sharp matrix A =  
A(F~F2F3) defined in Sect. 5.4 is the unit matrix, provided we choose real triple 
coefficients (cf. 2 ~ above); to see this, combine Eqs. (5.4.4) and (5.5.4). 

Using analogous arguments, one may show that the B matrices defined in Sect. 
5.4 are given by the following formulae, when real triple coefficients have been 
chosen: 

B ~  = B ' ( r , r ~ r 3 ) ~  = ~ ( r ,  l~r~)a(~, /3)  

a ~  = B~(r l r~r~)~ = ~r(r~l ~r2)a(a , /~)  

(5.5.5) 

(5.5.6) 

(5.5.7) 

[Note of warning. The requirement (5.5.2) may, in some cases, have a slightly 
surprising consequence. Suppose F is a real matrix irrep, i.e. F(R) is a real matrix 
for all R ~ G. Suppose further that Ro is an element such that F(Ro) is not the 
unit matrix ~; in this case it is necessarily -~, since this is the only real multiple 
of ~ (all conjugating matrices for F are proportional, Sect. 5.2). Using the 
conjugating matrix defined by (5.5.2) according to, say, (5.3.4), will then produce 
a sign change even though F itself is not changed by complex conjugation; i.e. 
generally we will have 

3' 3' 

An example is the irrep A2 in the octahedral double group which has A2(Ro) = -1 
for some of the cases studied in paper V.] 
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Suppose that 3-F symbols (F f2F3 / , l , 2 ,3 )8  have been chosen for a group with 
the property ( # ) and in accordance with (5.5.2). Then these 3-F symbols will of 
course also satisfy relations corresponding to (5.5.4)-(5.5.7). 

Suppose furthermore that we wish to construct coupling coefficients from these 
3-F symbols according to our conventions from Sect. 5.3. We look first at the 
expression (5.3.15) for the connecting phase factor. This expression here becomes 

~(r~r2r3fl) = ~(r , r2r3f l )~(r~ 1 ~r , ) ,  (5.5.8) 

because all the Fi are of the first or second kind and because sign (F31 GF3) = +l 
(see (5.3.6)). Formula (5.3.14) thus becomes 

- -  Pl F3 
(Fly1F272]flF3,3) = ~.(FIF2F3/3)Tr(Fll~Ft),/dimF3(y I F2 Y3) (5.5.9) 

By the use of (5.5.1) and (5.5.7) we may rewrite (5.5.9) to give a formula involving 
only one complex conjugation: 

(FIT1FzT2IflF3T3) = 7r(F,F2F3/~)~.(F21~Fa) dix/-~mF3(F: F2 F3) Y2 ,3 t3" (5.5.10) 

6. Example:  The particular case of  the rotation double group, R3* 

To illustrate the developments in the preceding sections, we now display some 
formulae for the particular case of the group R*. Classical references on this 
case are [7, 8, 9, 23]; Sect. 2 of [50] gives some of the essentials. The mathematics 
of the rotation group is further dealt with extensively in [10, 12, 13] and other 
sources, partly referred to in [58], but too numerous to be cited here. Being a 
double group, R* is also among the groups we are concerned with in paper II. 

For R* there is a conventional choice of standard matrix forms ~ (actually 
called the "contrastandard" by Fano and Racah [8]) of the irreps Dj, j = 0, 1/2, 
1, 3/2, 2, . . . ,  with the property that for every j the irrep matrix ~rJ1(cY*) is a 
conjugating matrix for ~rJl. Here C2 r* is a double-group element corresponding 
to the two-fold rotation about the Y axis, cf. Sect. 2.1 of Paper II. The matrices 
~o1(cY*) are explicitly given by 

~[J]( c Y * ) m m  , = (-1)J+m~(-rn, m') (6.1) 

where m and m' take on the values j, j -  1, . . . ,  - j  + 1, - j .  Explicit formulae for 
the elements of an arbitrary standard irrep matrix ~ 1 ( R ) ,  R c R*, may be found 
in, e.g. ([8], App. D). It is seen that the matrices (6.1) are symmetric for j = 0 ,  1, 
2, 3, . . .  and antisymmetric for j = 1/2, 3/2, 5/2,  . . . ,  corresponding to the fact 
that the irreps @~l are of the first kind for j equal to an integer and of the second 
kind for j equal to half an odd integer. 

Thus, R3* fits into the framework of Sect. 5.5. Furthermore, R* is multiplicity-free 
and therefore simple phase. In all, real 3-F symbols may be chosen for R* 
corresponding to the @FJ]. The well-known 3-j symbols (jLJ2j3/mlm2m3) make 
up the conventional choice of such 3-F symbols; for clarity, we shall denote them 
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sometimes as 

ml m2 m3 / ml m2 m3 

in the present section. Note that no "/3" is needed here because R* is multiplicity- 
free. An explicit formula for (jlj2J3/rnlrn2m3) exists (e.g. [9, Eq. (1.5)]). 

y* 
The 3-j symbols conform to the convention of (5.5,2) with Ro= C2 , that is, 
using (6.1), 

0 m ' = 0 m ' ]  = ( 2 j + l ) - l / 2 ( - l ) j + ' ' B ( - m ' m ' ) "  (6.2) 

As an example of the use of these conjugating matrices, Eq. (5.3.4) here reads 

@t J,3 @E J21 @tJ,3~ 

m l  m2 m3 ] 

[/~tJ,3 ~E43 @E J33) 
= E 42j'+l(2j'+l)-1/2(-1)J'+";a(-m~'m')\ m'l m2 rn3 / 

m; 

�9 / ~A3 @t J23 ~tJ33\ 
= ( -  1)J ' -" ' |  ] (6.3) 

\ - r n l  m2 m3 / 

and (5.3.5) correspondingly becomes 

= ( -  1)JI-m,(- 1)h-m2~_ml (6.4) 
\ rnl m2 rn3 / -m2 +m3/ 

which are the conventional formulae for complex conjugation in 3-j symbols 
(e.g., [7], p. 293). Note the convenience arising from the especially simple form 
(6.1) of the conjugating matrices. The general existence of  conjugating matrices 
with simple forms is ensured by statement 1 ~ of Sect. 5.5. With (6.3) established, 
the Wigner-Eckart theorem, (2.7), for R* takes the form 

(q~,] ~ t  tp~) = (~pA ii ~4 n ~0j~)(_ 1)j - m , ( / ,  m J2 J3 ) ,  (6.5) 
m2 m3/ 

which is the conventional one; see the references given in Sect. 2 or ([9], p. 6). 

The unit A matrix property (5.5.4), cf. Sect. 5.4, becomes 

= ( -  1)3<-~(- 1)~-m~(- 1)~-~q 
k ml m 2 m 3 / \ - m ~  - -m2 - m 3 ]  

(6.6) 

which, after a change of  notation and after noting the (well-known) property, 
proved also in paper II, of  the 3-j symbols that they vanish unless m~ + m2 + m3 = O, 
gives the formula 

ml /~2 m3 k - m 1  - -m2 --m3 
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From the above-noted distribution of first- and second-kind @~J on integer and 
half-integer j, we have the rule 

7r (~tJl~t~ t jl) = ( -  1 )2:. (6.8) 

In fact, the general permutational property of the 3-j symbols is 

~r (@[~0~hl~ E j31) = ( -  1 )J' +4%. (6.9) 

The B i matrix formulae (5.5.5)-(5.5.7) thus here take the form 

Bi(j,jzj3) = ( -  1) 2j'. (6.10) 

The definition (5.5.10) for coupling coefficients gives 

(Jl m,j2 m 2 [ j 3 m 3 )  

�9 ) =(_l)j,+jz+j3(_l)2j2~/2j3+l(_l)J3-~3( J, J2 J3 
\m~ m 2 - - m  3 

= ( - 1 ) J 2 - J ~ - " ~ / ~ ( ~ l  m2J2 -m3/J3 ~, (6.11) 

where we used (5.5.1) and (6.8) to see that we could multiply by 
( -1)-zJ , ( -1)-2h(-1)-2~=(-1)2J l ( -1)zJ~(-1)  2~= l. Hence (5.5.10) leads to the 
conventional relationship ([8], p. 50; [9], p. 1) between 3-j symbols and 
coupling coefficients for R* (Wigner coefficients). 

These latter coefficients further, from (5.3.17) have the permutational property 

(Jl m,j2m2]J3 m3) = (-- 1 )2jl (_ 1)2J2(-- 1 )J' +J~%(j2m2jl m l ]J3 m3) 

= (-- 1)J~+Jz-J3(j 2m2jlmllj3m3) (6.12) 

where we used (5.5.1) to see that (-1)2J~(-1) 2~= (-1)/j~ and further used that 
(-1)4J, = +1. 

If one restricts attention to the/9: with integer j, or, equivalently, studies just the 
rotation group R3, one may establish a Wigner-Racah algebra based on standard 
orthogonal, i.e. real unitary, matrix irreps. This is described in [2]. 

7. Conclusion 

This paper has developed the theory of the basic constructs in Wigner-Racah 
algebra, in our terminology triple coefficients, coupling coefficients, and 3-F symbols. 
A transparent treatment of permutational symmetry in these coefficient types has 
been achieved by starting from triple coefficients rather than coupling coefficients. 
A thorough discussion of  the Wigner-Eckart theorem has connected them to one 
of their immediate areas of application. Future work will demonstrate how the 
remaining Wigner-Racah algebra (recoupling formalism, 6-U and 9-F symbols) 
is built up from 3-F symbols [21, 59]. 

The results obtained for triple coefficients and coupling coefficients are generally 
valid for compact groups, whereas the formalism pertaining to 3-F symbols of  
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course only is interesting for simple phase groups (or at least simple phase 
irreducible representations). A consequent focusing on matrix representations 
whenever relevant and the use of a separate notation for such representations 
(in contradistinction to the equivalence classes they generate) has, in our opinion, 
enabled a much clearer discussion of the consequences of  complex conjugation 
than that hitherto present in the literature. By imposing the very mild restriction 
of having complex conjugate representations actually occur in complex matrix 
forms, considerable simplifications is introduced into the formalism. 

Since 1940 there has been interest in generalizations of the Wigner-Racah algebra 
of the rotation (double) group. Wigner [14] chose to focus on the simply reducible 
groups. It is apparent from our exposition that the restrictive condition of being 
multiplicity-free is not crucial. A generalized rotation-group-like algebra has been 
established in Sect. 5.5 for a class of ambivalent groups having an algebra of 
irreducible representations which is "regular with respect to the Frobenius-Schur 
classification": real 3-F symbols may be chosen (if the group is simple phase), 
all Derome-Sharp matrices are unit matrices, and the "associativity o f  the 
invariant triple product"  may be established by choosing a suitable connecting 
phase between coupling coefficients and triple coefficients. 

Readers familiar with the Derome-Sharp-Butler  formulation of Wigner-Racah 
algebra [15, 16, 17, 19, 22, 57] will see that there are many differences in notation, 
terminology, and conventions, as already indicated in connection with complex 
conjugation. Further, we put much more emphasis on 3-F symbols, which is 
natural because the groups we are interested in in papers II-VI are all simple 
phase. 

We reserve for paper II our comments on the different approaches to the actual 
construction of Wigner-Racah algebras for the double groups. 

Appendix 

In this appendix we have collected some material of a mathematical nature which 
naturally belongs to the exposition of  the present paper but which could be left 
out of the main text without inconvenience. 

A.1. Remarks on tensor products of irreps 

Let G be a compact group (cf. remark in Sect. 1) and let F1, F2, F 3 be three irreps 
of G of  dimensions d~, d2, d3. For any finite-dimensional rep F of G, let Xr denote 
the character of F. 

A. I. 1. Multiplicities 

Suppose F is any finite-dimensional rep of G and F' is an irrep of G. We 
def ine - jus t  for the purpose of the present d iscuss ion- the  symbol ~(F' lU) to 
mean the multiplicity (or frequency) of F' in F, that is, the number of  times F, 
when decomposed into a direct sum of irreps, contains an irrep equivalent to F'. 
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In case G is finite of order I GI, this number, as is known from character theory, 
may be computed by 

1 
~ ( r ' l r ) = r - ~  Y. X r , ( R ) X r ( R )  (A.I.1) 

IUt R~(U 

(and in general it may be found by the analogous formula involving an integral 
over G). 

For matrix forms F1, F2, F3 of F1, F2, F3 we have defined in Sect. 3.1 the linear 
space o~(F1Fff3) of fix-vectors for the tensor product rep F~|174 As noted 
there, the dimension of this space is equal to the multiplicity of the totally 
symmetric irrep 1~ of G in ~ | 1 7 4  thus, 

dim o~e(FIF2F3) ~-- ./~(1 G[~I | 174  

= ~ ( l c l F l Q r 2 |  (A.1.2) 

where the last equality comes from complex conjugation of the whole formula 
(dim o~(r IF2F3) is, of course, a real number). Note that this number is independent 
of the particular matrix forms chosen for F1, F;, F3; we shall thus often just write 
dim g ' (FfeF3) ,  even though we do not define the symbol ~(FtF2F3) itself. 

If ~r is a permutation of the symbols 1, 2, 3, we have 

dim ~(F(~(I)F~(2)F~(3)) = M(1 GIF,~o)@F~(2)@F~(3 )) 

= M(lo]F~|174 = dim o~(Ffff3) ,  (A.1.3) 

where the second identity follows from (A.I.1), using the fact that 

Xr~(,)gr~(2)Xr~(3) = Xr,Xr2Xr3. (A. 1.4) 

From (A.I.1), one may furthermore show that 

~ ( l ~ l r |  = ~ (P l r ' )  

and thus, in particular, that 

d//(1 ~IF1 @r2@r3) = (A.1.5) 

for any permutation o-. We may use this to prove the estimate (3.1.4). Choose o- 
so that the dimensions satisfy d~(~)---d~(2)- > d~(3). Let Fb r2, F3 be any matrix 
forms o f F b  F2, F3. Since the matrices in the rep [~,:,(2)| Fo-(3) are  of size d,~(2)d~(3) x 
d~(2)d~r(3) and the matrices in the irrep F~(~) are of size d~(~) x d~(j), the latter irrep 
can obviously occur at the most d~(2)d~(3)/d~(~) times as a subrepresentation of 
the former, i.e. 

J//~ (P~o)IF~(2) @ r~(3)) -< d,~(a)d,~(3)/d~(t) 

= d~(3) x (d~(2)/d~(~)) <- d~(3)= min {dl, d2, d3}. (A. 1.6) 

Combining (A.1.6) with (A.l.5) and (A.I.2) gives the estimate (3.1.4). Note that 
we used the assumed irreducibility of the F~ in interpreting the number on the 
right side of (A.1.5) as the multiplicity of P~(~) in F~(2)| 
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A. 1.2. Permuta t iona l  properties 

The purpose of  this section is to establish the connection between the permuta- 
tional properties of sets of triple coefficients discussed in Sect. 3.2 and the 
information which is usually readily available in compilations of character and 
related tables, namely the resolution of tensor squares of irreps into symmetric 
and antisymmetric parts. 

If  V is a finite-dimensional vector space and n an integer (we shall actually only 
be interested in the cases n = 2 and n = 3), we can form the n-fold tensor product 
space V ~  V @ . . . @  V (n factors). It may now easily be verified that the 
prescription 

II~(~r)(vl | �9 �9 | v,) = v~-M)| �9 �9 | v~-,(,) (A.1.7) 

for all Vl, �9 �9 �9 Vn ~ V and all permutations o- of the symbols 1 , . . . ,  n defines an 
(operator) rep II ,  of  the symmetric group S, on V ~ The space V ~" can then 
be written as a direct sum 

V Q " :  @ ( V ~  (A.1.8) 
irreps 

of S. 

where for each irrep ap of S. we denote by ( V~ or ( V |  �9 �9 | V),~ the subspace 
of V ~ transforming under H.  as ~.  (By this we mean that (V~ is the sum 
of all subspaces of  V ~  which are invariant and irreducible under I I .  and 
transform as ~.)  

If 3- is an (operator) rep of  G on V and �9 is an irrep of S., it can easily be 
shown that ( V~ is invariant under the n-fold tensor product 3-| of  3- (which 
is a rep on V~ we shall denote the rep of G on (V~ formed by restriction 
of all the operators 3-| R ~ G, to this subspace as (3-| 

To proceed from here, we recall the basic facts about irreps of $2 and $3 by 
giving their character tables: 

S2 {e} 

s or [2] 1 
irreps 

a or[12] 1 

irreps { 

s3 {e} 

[3] l 
[2, 1] 2 
[13 ] 1 

{(12)} 

1 (totally symmetric irrep) 

-1  (alternating irrep) 

conjugacy classes 

{(123), (123) -1} {(12), (23), 31)i 

1 1 
-1  0 

1 - 1  

(A.1.9) 

(A.I.IO) 

The symbols [2], [12] etc. for the irreps derive from the theory of Young diagrams 
(e.g. [60, 61]). 
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Suppose now that 9- from before is equivalent to some irrep F of G. For n = 2, 
we obtain the reps (9-| 9-)[2j and (9-| 9-)[l~j from the above considerations; we 
shall use the symbols 

(F| or F |  

and (A.I.11) 

( r |  1 or F |  

for the equivalence classes of these reps. For n = 3, we get in a similar manner 
the three reps (F| (F@F| and (F@F@F)[I~ 1. It turns out that 
the following general formulas giving the connection between the character Xr 
of F and the characters of the S,-adapted parts of its second and third powers 
may be derived (e.g., [53]; [61], II, p. 73): 

Xro~r(R) = �89 2 +lXr(R2) ; 

Xro~r(R) = �89 2 - �89 ; 

X(rQr| ) = ~Xr(R) 3 +lXr(R)Xr(R2) +lXr(R3) ; 

X(r|174 = 2Xr(R)3 -2Xr(R3) ; 

+~Xr(R ), X(r|174 l 3 .  for all R~  G. (A.l.12) 

2 
Note that (of course)Xr| +Xr| = Xr and X(r|174 + X(rorQr)t2,1 + X(rQr| ~ = 
x~- 

We may now turn to the situations considered in Sect. 3.2. In part (A) of that 
section the relevant information is the frequency of the totally symmetric irrep 
in (Fl @s F1)@F3 and (F1 | F1)| since obviously 

dim ~(r,r,r~)= ~(l~l(r, | r,)| 

and (A.l.13) 

dim ,~a(r,rlr3)= ~(l~l(r, | r,)| 

But by the equation preceding (A.1.5), we have 

and 

~(l~l(r ,  | r,)| ~(rdrl | El). 

(A.l.14) 

Formulae (A.l.14) are important in that they show that dim ffs(F1F1F3) and 
dim ~a(FIF~F3) can be found directly from the information available in many 
tables of irrep tensor products (e.g. [42, 43]), namely the separate resolution of 
F | F and F @a F into irreps. 
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Turning to the situation in part (B) of Sect. 3.2, we see that the information we 
seek there is 

dim o%~(rr r )  = Jg(l~l(V|174 ) 

and (A.l.15) 

dim O~El3](rrr) = ~ ( l d ( r Q r G r ) E r  

Eqs. (A.l.1), (A.l.12), and (A.l.15) in principle enable us to calculate these 
dimensions. However, one could again ask whether the standard information, 
d/g(FIF | F) and ~ ( P [ F  | F), is of any relevance. If one calculates these quan- 
tities as well as those on the right sides of Eqs. (A.l.15) by using (A.I.1) and 
(A.I.12), one gets the result that 

, ( l ~ l ( r o r o r ) E 3 1 )  = ~ ( r l r  |  F ) - l ~ ( l ~ l ( r | 1 7 4  

and (A.l.16) 

e g ( l d ( r |  | r)e,,~ =  (rlr | r ) -  l~ (1Gl ( r |  | r)t~,~), 

that is, dim ~E31(rrr) may be computed as Jg(Plr | r) and dim as 
d~(PlF |  F) /f and only if d/g(ld(F|174 q )=0 ,  a condition which is (cf. 
Sect. 3.2) equivalent to F being a simple phase irrep. Note from (A.I.12) that F 
is simple phase if and only if 

1 2 
R~G__ 3 [ X F ( R ) 3 - ) ( F ( / 3 ) ] :  0 

ICl 
or (A. l .17) 

Y. Xr(R) 3= E Xr(R3) 
R ~ G  x R c G  

(for G finite). 

Proceeding from triples of irreps to quadruples etc., one finds that the property 
analogous to the simple phase property (i.e. occurrence of  only the totally 
symmetric and the alternating irrep of  the symmetric group) is not even possessed 
by a simply reducible group like SU(2) [62]. 

A.2. Discussion of Eq. (3.1.5) 

If ( c l , . . . ,  oN) is an orthonormal basis for ~(Flrm~3), i.e. 

~r = 6(/3,/3') for aiI/3,/3', (A.2.1) 

then it may easily be shown that the matrix 

N 
P =  E ~r (A.2.2) 

/3=1 

has the properties P* = P;  P 2 = P; Pc~ = c~ for all /3 = 1 , . . . ,  N. Further, for a 
column matrix • (• for all /3 implies P •  Thus P is the matrix for 
the orthogonal projection onto ~(F~F2F3). 
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In Sect. II of [54] we dsicussed the fact that 

r=lGl-' Z F,(R)|174 (A.2.3) 
R c G  

is also the matrix of the orthogonal projection onto ff(F1F2F3). Writing out the 
equation P = F in coordinates and taking the complex conjugate on both sides 
gives Eq. (3.1.5). 

Thus this equation is of a rather general nature and does not for its verification 
require the "long manipulation" mentioned in ([52], p. 102). Note that it has not 
been necessary to assume the Fi irreducible. A proof  of an analogue of  Eq. (3.1.5) 
for coupling coefficients using also the projection operator idea is given in [36]. 
A proof  of Eq. (3.1.5) in a context completely different from the present one 
appears in [35]. 

In the special case of the rotation group, which is multiplicity-free, the sum on 
the left-hand side of Eq. (3.1.5) has only one term. In [7] Wigner used the analogue 
in Eq. (3.1.5) for coupling coefficients in his derivation of coupling coefficients 
for the rotation group (Sect. 6). Further elaborations on this kind of formula for 
the rotation group may be found in [63]. 

A.3. Investigation of the matrix C defined in Eq. (3.3.6) 

Suppose A~ and Aj are two of the irreps appearing in (3.3.5). We form the matrix 

C u = C [ C  ;. (A.3.1) 

From (3.3.4), applied to • and • and the unitarity of the considered matrix 
reps, we then have 

Cij• 

= C~(Cj~j(R)) = C/*([rl(R ) @F2(R)]Cj)  

= ( [ r , ( R ) |  = ( [F , (R-1) |  ' ) ]C,)*Cj 

= ( C i A i ( R - I ) ) t C j  = A,(R- ' ) *C~Cj  

= A~(R)C~j for all R ~ G. (A.3.2) 

By Schur's lemma and the assumption that equivalent irreps occurring in (3.3.5) 
are chosen identical we conclude that 

C~*C~ = C~ =0  ifA~ # A~ (A.3.3) 

and 

C~Cj = C~ = h~l (A.3.4) 

for some suitable number h~ if A~ = • We stress that A~ = • here means • = 
At(R) for all R ~ G. 
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If i # j  in (A.3.4), the matrices Ci and Cj have been constructed from mutually 
orthogonal sets of  triple coefficients denoted by, say, 

( F  1 r 2 A) and (F~ F2 A) 
")/1 T2 t~ /3i T1 'Y2 t~ /3j 

(we write • = A~ = • Letting d = dim AX and denoting by Tr the trace of a matrix, 
we then have 

d,o = T r  = Tr (C Cj) 

~0 
Y13'2 \ 71 Y2 8, ] /3 i \  Yl 72 8 //31 

tha t  is, 

C [ C j  = * , j l  = e. 

(A.3.5) 

(A.3.6) 

In conclusion, there are numbers h i , . . . ,  hp such that 

C~*Cj = 6qh, for i ,j  = 1 , . . .  ,p. (A.3.7) 

Suppose, given an index i, that Ci was constructed from a set of  triple coefficients 

~/1 ~/2 ~ /3 i" 

Putting d~ = dim A~, we get by the same type of calculation as in (A.3.5) that 

d~A~= ~ d~ F1 F2 ~ > 0  (A.3.8) 
rl v2~ TI T2 

so that 3.~> 0. We see from (A.3.7) and (A.3.8) that C defined in (3.3.6) is 
non-singular. If  triple coefficients normalized according to (3.3.10) have been 
used we see from (A.3.8) that all A~ = 1 ; eq. (A.3.7) then gives 

/c:\ 

\c;/ 
i.e. C is unitary. 

Note that Eq. (3.1.6) follows by writing (A.3,4) in coordinates in the case i = j ;  
the argument of (A.3.8) shows that a ~ 0  in (3.1.6). 

A.4. Associativity of invariant triple products 

In this section we shall consider the following situation: A finite or compact 
simple phase (cf. Sect. 3.2) group G is given. A system of standard unitary matrix 
irreps of  G and a corresponding complete system of sets of 3-F symbols are also 
assumed to be given. Suppose that three (finite-dimensional) Hilbert spaces V~, 
V2, V3 and unitary operator reps 3-1, 3-2, 3-3 of G on Vj, 1/'2, and V3, respectively, 
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are given, and that for each i = 1, 2, 3 an orthonormal basis consisting of vectors 
F. ~; --IF,3/,) may be chosen in V~ transforming under 3] as the standard form Fi 

of a certain irrep Fi of G (that is, satisfying 

eri(R)lr,v,) =E for all R c G). (A.4.1) 
v; 

We are interested in fix-vectors for the triple tensor product rep ~-1 (~)J-2(~)~-3 in 
F I F2e:~ F 3 the tensor product space V1 | V2| V3 spanned by the products ~ r, | ~ r2~ ~ r3 = 

IF1yl)]FEyz)IF3Y3). Such fix-vectors have been called invariant triple products [8]. 
By the definition of 3-F symbols, a vector of the form 

Z (r, P2 r3)Ir13/,)V23/2)lr~3) (A.4.2) 
")'l "Y2 T3 3/1 3/2 3/3 /3 

is such a fix-vector (where/3 as usual allows for possible multiplicity in the triple 
F f2F3). However, fix-vectors may also be formed by coupling (tensoring) together 
the IF,%) two at a time using coupling coefficients derived by Eq. (5.3.14) from 
the given 3-F symbols. Our aim here is to show how a suitable choice of the 
phase ~p (F f2F3/3) in (5.3.14) - for groups satisfying a certain technical condition 
on their "representation algebra" (Eq. (A.4.12) below) - m a y  ensure that the two 
fix-vectors arrived at by the coupling schemes 

(i) FI@F2~F3, F3@F3 --~ 1~ (A.4.3) 
(ii) F2| ~ Pl, F1| ~ lc  

are identical and how the same choice of the phase may ensure that, in the case 
of G ambivalent (no irreps of the third Frobenius-Schur kind (Sect. 5.2)), one 
arrives also at identical fix-vectors using either of the coupling schemes 

(i) r , o r 2 - , r 3 ,  r3Qr~-~ 1G (A.4.4) 
(ii) F2| ~ F1, FI| 1G 

(the meaning of these coupling schemes is explained below). The property alluded 
to has been called the "associative property" of the invariant triple product [8]. 

Since a complete set of 3-F symbols for G is supposed to be given we have in 
particular for each irrep F the 3-F symbols 

(F3/ 1~0 F,)and (~  1~0 ~') 

(since, as remarked in Sect. 5.3, dim ~-(PlcF) = 1 = dim o~(FI~P) for any irrep 
F). By the discussion in Sect. 5.3, these 3-F symbols always satisfy 

s ign(FlcP)6(%3/ ' ) (d imF)- l /2=(  F 1~ F )  
3/ 0 Y' 

=~-(~lcF)(~, 1~ F 0  3/) 
= ~(FI~F) sign (FI~F)6(y, y')(dim F) -1/2 

(A.4.5) 
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where sign (F1GF) and sign ( r loF)  are phase factors satisfying sign (F1GF)= 
~r(FlcP) sign (F1GF) for all F and sign ( P l c F ) =  +1 for all standard F of the 
first or second kind. 

We now study the first coupling scheme, (i), in (A.4.3). 

We assume a fixed but arbitrary value of the multiplicity index/3. By "coupling 
F1 and F2 to get Fa" we mean forming the vectors 

1/3r373)v,| = E (F,v~F:Y:I/3r373)IFlV,)IFzy2) 
"YI T2 

(A.4.6) 

in VI | 1/2 (these make up a set transforming as F3 under ff-~ | 3-2). The subsequent 
coupling of F3 with F 3 to get the totally symmetric irrep 1G consists in forming 
the vector 

1 0 \0)  I/3 ~ ,v, |174 E (r~%r~7dl~O)l~r3%)v~| 
v3 yl 

E (r37~r3y311co)(r,y,r~y~l~r~y~)lr,yl)lr2~2)lr373) 
Y172737~ 

(A.4.7) 

in V~ | V2| V3; this vector is, by construction, a fix-vector for g-~ | ,3-2| 3-3, that 
is, an invariant triple product. 

The coupling scheme (ii) in (A.4.3) leads by a completely analogous two-step 
construction, with a chosen multiplicity index/3', to the fix-vector 

~ Pl (~\ (ii) 
* G v / V ~ | 1 7 4  3 

= 2 (F,v,P,v~lloO)(F272F3731/3'f'ly~)lF,v1)lF~y~)IF3y3). (A.4.8) 
~{ TI 7273 

We now express the coupling coefficients appearing in the expansions of 
(i) IfllGO}v,|174 and Ifl'lGO)(~,~v2| as linear combinations of the 

IF1 yl)IF2Y2}IF3 73), by 3-F symbols, using (5.3.14). This gives, remembering (A.4.5), 

fll 0 \(i) G /V~ |174  

71 72 71 /3 

= ~",)tl 2/2,3 q~ G) sign (P31 GF3)q~(F1F2Fafl)(F: 
72 73 fl 

• IF, v,>lr2~2)lr3 73> (A.4.9) 



Phase-fixed double-group 3-F symbols. I 359 

and 
1/3'1 f~\ (ii) G V l  Vl| V2| V3 

'Yl "Y { 'Y2"Y3 
Fi 10)@ (F2F3~ i/3 ,)4di--l~ll (Fy: F3 ~"~ i ) 
)'~ Y3 /3' 

~/I T2 Y3 ')/2 ')/3 /3' 

x Ir l  ~,)Ir:~2>Ir~ ~). (A.4.10) 

(The reader should notice that we have here used (5.3.14) in the way described 
in Sect. 5.3, that is, we allow ~mnjugated standard irreps in the coupling coefficient 
on the left-hand side of the formula but then agree that entities of the type "F"  
appearing in this situation on the right-hand side are immediately rewritten using 
F = F before further use is made of the right-hand side.) 

We see now, firstly, that there is no chance of having (i) t/31 cO)  v,| v2| v~ = 
/3'1 fiX(ii) = / 3 '  * ~ , ' / v ~ | 1 7 4  unless/3 and, secondly, that if the equality is to hold for all 
standard irrep triples F~F2F3 and all/3, the phase function r (F1F2F3/3) must satisfy 

q~(F3F31G) sign (e31 ~r3)~(VlF2;3/3) 

= q~(rlP, 1 ~)7~(P 11 oF1) sign (Pl 1GF1)~(P,F2F3/3) (A.4.11) 

for all standard irrep triples F~F2F3 and all /3. Although this condition looks a 
little involved it turns out to be relatively easy to spot a solution if one assumes 
the 3-F symbols chosen for G to have the property that 

7r(Fl 1 ~P~) 7r (r  21 ~P2) 7r(F31 ~F3) = 1 (A.4.12) 

whenever dim ~-(FIF2F3) > 0. 

This condition is always fulfilled for the 3-F symbols for the non-commutative 
double groups generated by the procedure of paper II (see Sect. 4.4 there). For 
ambivalent groups G the condition reduces to a "group-theoretic" one (the 
"regularity" of the "representation algebra" of G discussed in Ref. [54]). For 
the particularly nice ambivalent groups studied in Sect. 5.5 the condition is always 
fulfilled (see Eq. (5.5.1)). Butler has investigated to what further extent the 
condition may be fulfilled for various groups [45, 17]. 

Under this assumption the reader may easily verify that the phase function defined 
by 

(r,r2r3/3) = ~(F1F2P3/3) ~'(F11 cP~) sign (F31GF3) (A.4.13) 

(for all irreps FIF2F 3 which are either standard irreps or conjugates of first- or 
second-kind standard irreps) solves the problem. We believe that (A.4.13) is the 
simplest formula'leadi[ag to a phase fulfilling the stated requirement, and even 
though we have not proved in a strict sense that this is the case, we shall adopt 
(A.4.13) as our definition of q~(FIF2F3/3). 
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An appealing feature of this choice is, as anticipated above, that formula (A.4.13) 
also ensures the associativity of the invariant triple products arrived at by the 
schemes (i) and (ii), respectively, in (A.4.4), in the special case of  ambivalent 
groups satisfying (A.4.12). We leave it to the reader to check this in detail. (The 
two schemes in (A.4.4) do not in general lead to non-zero triple fix-vectors since 
coupling coefficients of the type (FyF7'[I~0)  are zero when F is of the third 
kind). In the even more special case of the rotation group, formula (A.4.13) leads 
to exactly the conventional phase relation between coupling coefficients and 3-j 
symbols (see Eq. (6.11)). 

For further discussion of associativity and its connection with recoupling 
coefficients, see [21, 59]. 

Summarizing, the requirement that "invariant triple products" should have the 
"associativity property"  has led us to fix the relationship between 3-F symbols 
and coupling coefficients by the formula 

(r, ~,r~ ~'~1/3 r33,3) 

= ~ ( r l r ~ P 3 ~ ) ~ ( r , l ~ l ) s i g n ( P 3 1 o r ~ ) , / ~ ( P :  " p~ r~)  (A.4.14) 
Y2 Y3 

for all F1, F2, F3 which are standard irreps or complex conjugates of  first- or 
second-kind standard irreps. 

In [50] the reverse line of argument was followed: by an analysis of invariant 
triple products the phase required to produce 3-F symbols from coupling 
coefficients for the octahedral double group was determined. 

A.5. On the existence of unit Derome-Sharp A matrices 

With reference to the remarks in Sect. 5.4, assume Ft, F2, F3 to be standard unitary 
matrix irreps and suppose (c~ , . . . ,  oN) and (~1,- .- ,  iN) to be orthonormal bases 
in the fix-spaces o~(FIF2F3) and ff(F1F2F3), respectively, chosen according to the 
conjugation conventions of Sect. 5.3.1 to the extent that these are relevant. Assume 
further that the A matrix with elements A~t3 = (c-]~t~) is a symmetric matrix. We 
shall prove now that in this situation we may choose new fix-vector bases 
generating a unit A matrix. We have to distinguish several cases: 

(i) If all three irreps are of the third kind, there are no ties between our basis 
choices in o%(F]F2F3) and ~(F~F2F3), and the argument may run as follows: Since 
A is symmetric and unitary, it may be written A = QQ-~ with a suitably chosen 
unitary matrix Q (e.g. [8] Appendix C; [64] pp. 57-58). Choose (c], . . .  , ~ )  
defined by 

( e l " "  ~ % ) = ( e l " "  e/v)Q (A.5.1) 

as the new orthonormal basis for o~(F~F2F3) and 

(~] �9 �9 �9 ~ )  = (~] �9 �9 �9 ~N)Q (A.5.2) 
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as the new basis for ~(F~FEF3). We then have 

(~'~ �9 �9 �9 ~ , )  = ( ~ .  �9 �9 ~ N ) Q  --  ( ~ i  " "  �9 ~ N ) / ~  

=(r  " " c N ) Q = ( ~  �9 �9 �9 r (A.5.3) 

showing that the new A matrix for r ! .~2~ 3 is the unit matrix. Note that the new 
A matrix for FIFzF3 simultaneously becomes also the unit matrix; thus, in this 
case, our argument takes care of two standard irrep triples. 

(ii) Suppose, to go to the opposite extreme, that all three Fi have conjugating 
matrices Ui. In this case, we are dealing with only one standard irrep triple, but 
our conventions lead to formula (5.4.8) for the A matrix for any choice of an 
orthonormal basis in ~(F,r:r3). We proceed initially as in (i), choosing Q and 
defining ( e l , . . . ,  c~) as in (A.5.1), but then must define ( ~ , . . . ,  ~ )  by 

" - U e ~  for a l l /3=1 ,  .. N, (A.5.4) 

where U = U ~ I | 1 7 4  We then get 

( ~  �9 �9 �9 ~ , )  = ( ~  �9 �9 �9 ~ )  

= ( 0 ~  �9 �9 �9 q 3 ~ N ) ~  = ( ~  �9 �9 �9 ~ N ) A Q  

= ( ~  �9 . -  ~ ) ~  = ( ~  �9 �9 �9 ~ )  ( A . 5 . 5 )  

so that the new A matrix is a unit matrix. 

(iii) In the cases where precisely one of the F~ or precisely two of  the F~ are of 
the third kind, proofs may be constructed along similar lines. In all these cases 
there are again two standard irrep triples involved, and our conventions give a 
partial tie between our basis choices in the relevant fix-spaces. Note, however, 
that this time we may not be sure to be able to produce simultaneously unit A 
matrices for the two triples involved. In fact, from our definitions, one may easily 
derive formulae like e.g. 

A(FIF2F3) = 7r(F~ 1GFI)I~(FIF2~'~3) (A.5.6) 

and 

~(r , r~r3)  = ~(r ,  1 ~r l )~(r~l  or~)~(r,r~r~) (A.5.7) 

for the cases with precisely two third-kind irreps and precisely one third-kind 
irrep, respectively. These formulae are a consequence of our conjugation conven- 
tions for first- and second-kind irreps. We see that if, for example, HI in (A.5.6) 
is of the second kind, we necessarily have 

A(Fjr2F3) = -A(~IF2F3). 

An example to illustrate (A.5.7) could be the triple EIE1/eRt in D* (see paper III). 

[As noted in Sect. 5.4, Butler has also discussed the possibilities of obtaining unit 
/~ matrices. Essentially the same proof as ours in (i) and (ii) above is featured 
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in  ([17] ,  Sect .  8),  b u t  d u e  to  - a p p a r e n t l y  - o t h e r  c o n v e n t i o n s  fo r  c o n j u g a t i n g  first-  

a n d  s e c o n d - k i n d  i r r ep s ,  t h e  d i s c u s s i o n  c a n n o t  b e  c a r r i e d  o v e r  i n t o  o u r  p r e s e n t  
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